Displaying 521 – 540 of 912

Showing per page

On the Lagrange-Souriau form in classical field theory

D. R. Grigore, Octavian T. Popp (1998)

Mathematica Bohemica

The Euler-Lagrange equations are given in a geometrized framework using a differential form related to the Poincare-Cartan form. This new differential form is intrinsically characterized; the present approach does not suppose a distinction between the field and the space-time variables (i.e. a fibration). In connection with this problem we give another proof describing the most general Lagrangian leading to identically vanishing Euler-Lagrange equations. This gives the possibility to have a geometric...

On the mobility and efficiency of mechanical systems

Gershon Wolansky (2007)

ESAIM: Control, Optimisation and Calculus of Variations

It is shown that self-locomotion is possible for a body in Euclidian space, provided its dynamics corresponds to a non-quadratic Hamiltonian, and that the body contains at least 3 particles. The efficiency of the driver of such a system is defined. The existence of an optimal (most efficient) driver is proved.


On the multiplicity of brake orbits and homoclinics in Riemannian manifolds

Roberto Giambò, Fabio Giannoni, Paolo Piccione (2005)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let M , g be a complete Riemannian manifold, Ω M an open subset whose closure is diffeomorphic to an annulus. If Ω is smooth and it satisfies a strong concavity assumption, then it is possible to prove that there are at least two geometrically distinct geodesics in Ω ¯ = Ω Ω starting orthogonally to one connected component of Ω and arriving orthogonally onto the other one. The results given in [5] allow to obtain a proof of the existence of two distinct homoclinic orbits for an autonomous Lagrangian system emanating...

On the optimal control of implicit systems

P. Petit (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider the well-known implicit Lagrange problem: find a trajectory solution of an underdetermined implicit differential equation, satisfying some boundary conditions and which is a minimum of the integral of a Lagrangian. In the tangent bundle of the surrounding manifold X, we define the geometric framework of q-pi- submanifold. This is an extension of the geometric framework of pi- submanifold, defined by Rabier and Rheinboldt for determined implicit differential equations,...

On the topological charge conservation in the three-dimensional O ( 3 ) σ -model.

Jaroslav Dittrich (1984)

Aplikace matematiky

A field of three-component unit vectors on the 2 + 1 dimensional spacetime is considered. Two field configurations with different values of the topological charge cannot be connected by the path of field configurations with a finite Euclidean action. Therefore there is no transition between them. The initial and final configurations are assumed to be continuous at infinity. The asymptotic behaviour of intermediate configurations may be arbitrary. The proof is based on the properties of the degree of...

On the weak robustness of fuzzy matrices

Ján Plavka (2013)

Kybernetika

A matrix A in ( max , min ) -algebra (fuzzy matrix) is called weakly robust if A k x is an eigenvector of A only if x is an eigenvector of A . The weak robustness of fuzzy matrices are studied and its properties are proved. A characterization of the weak robustness of fuzzy matrices is presented and an O ( n 2 ) algorithm for checking the weak robustness is described.

On the zero-temperature or vanishing viscosity limit for certain Markov processes arising from Lagrangian dynamics

Nalini Anantharaman (2004)

Journal of the European Mathematical Society

We study the zero-temperature limit for Gibbs measures associated to Frenkel–Kontorova models on ( d ) / d . We prove that equilibrium states concentrate on configurations of minimal energy, and, in addition, must satisfy a variational principle involving metric entropy and Lyapunov exponents, a bit like in the Ruelle–Pesin inequality. Then we transpose the result to certain continuous-time stationary stochastic processes associated to the viscous Hamilton–Jacobi equation. As the viscosity vanishes, the...

One-parameter families of brake orbits in dynamical systems

Lennard Bakker (1999)

Colloquium Mathematicae

We give a clear and systematic exposition of one-parameter families of brake orbits in dynamical systems on product vector bundles (where the fiber has the same dimension as the base manifold). A generalized definition of a brake orbit is given, and the relationship between brake orbits and periodic orbits is discussed. The brake equation, which implicitly encodes information about the brake orbits of a dynamical system, is defined. Using the brake equation, a one-parameter family of brake orbits...

Currently displaying 521 – 540 of 912