Displaying 161 – 180 of 441

Showing per page

Integration of the EPDiff equation by particle methods

Alina Chertock, Philip Du Toit, Jerrold Eldon Marsden (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The purpose of this paper is to apply particle methods to the numerical solution of the EPDiff equation. The weak solutions of EPDiff are contact discontinuities that carry momentum so that wavefront interactions represent collisions in which momentum is exchanged. This behavior allows for the description of many rich physical applications, but also introduces difficult numerical challenges. We present a particle method for the EPDiff equation that is well-suited for this class of solutions and...

Integration of the EPDiff equation by particle methods∗∗∗∗∗∗

Alina Chertock, Philip Du Toit, Jerrold Eldon Marsden (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

The purpose of this paper is to apply particle methods to the numerical solution of the EPDiff equation. The weak solutions of EPDiff are contact discontinuities that carry momentum so that wavefront interactions represent collisions in which momentum is exchanged. This behavior allows for the description of many rich physical applications, but also introduces difficult numerical challenges. We present a particle method for the EPDiff equation that...

Invariance of the Gibbs measure for the Benjamin–Ono equation

Yu Deng (2015)

Journal of the European Mathematical Society

In this paper we consider the periodic Benjemin-Ono equation.We establish the invariance of the Gibbs measure associated to this equation, thus answering a question raised in Tzvetkov [28]. As an intermediate step, we also obtain a local well-posedness result in Besov-type spaces rougher than L 2 , extending the L 2 well-posedness result of Molinet [20].

Invariant measures for the defocusing Nonlinear Schrödinger equation

Nikolay Tzvetkov (2008)

Annales de l’institut Fourier

We prove the existence and the invariance of a Gibbs measure associated to the defocusing sub-quintic Nonlinear Schrödinger equations on the disc of the plane 2 . We also prove an estimate giving some intuition to what may happen in 3 dimensions.

Ito equation as a geodesic flow on Diff s ( S 1 ) C ( S 1 ) ^

Partha Guha (2000)

Archivum Mathematicum

The Ito equation is shown to be a geodesic flow of L 2 metric on the semidirect product space 𝐷𝑖𝑓𝑓 s ( S 1 ) C ( S 1 ) ^ , where 𝐷𝑖𝑓𝑓 s ( S 1 ) is the group of orientation preserving Sobolev H s diffeomorphisms of the circle. We also study a geodesic flow of a H 1 metric.

KAM theory for the hamiltonian derivative wave equation

Massimiliano Berti, Luca Biasco, Michela Procesi (2013)

Annales scientifiques de l'École Normale Supérieure

We prove an infinite dimensional KAM theorem which implies the existence of Cantor families of small-amplitude, reducible, elliptic, analytic, invariant tori of Hamiltonian derivative wave equations.

Kink solutions of the binormal flow

Luis Vega (2003)

Journées équations aux dérivées partielles

I shall present some recent work in collaboration with S. Gutierrez on the characterization of all selfsimilar solutions of the binormal flow : X t = X s × X s s which preserve the length parametrization. Above X ( s , t ) is a curve in 3 , s the arclength parameter, and t denote the temporal variable. This flow appeared for the first time in the work of Da Rios (1906) as a crude approximation to the evolution of a vortex filament under Euler equation, and it is intimately related to the focusing cubic nonlinear Schrödinger...

Currently displaying 161 – 180 of 441