Page 1 Next

Displaying 1 – 20 of 39

Showing per page

The cubic Szegő equation

Patrick Gérard, Sandrine Grellier (2010)

Annales scientifiques de l'École Normale Supérieure

We consider the following Hamiltonian equation on the L 2 Hardy space on the circle, i t u = Π ( | u | 2 u ) , where Π is the Szegő projector. This equation can be seen as a toy model for totally non dispersive evolution equations. We display a Lax pair structure for this equation. We prove that it admits an infinite sequence of conservation laws in involution, and that it can be approximated by a sequence of finite dimensional completely integrable Hamiltonian systems. We establish several instability phenomena illustrating...

The generalized de Rham-Hodge theory aspects of Delsarte-Darboux type transformations in multidimension

Anatoliy Samoilenko, Yarema Prykarpatsky, Anatoliy Prykarpatsky (2005)

Open Mathematics

The differential-geometric and topological structure of Delsarte transmutation operators and their associated Gelfand-Levitan-Marchenko type eqautions are studied along with classical Dirac type operator and its multidimensional affine extension, related with selfdual Yang-Mills eqautions. The construction of soliton-like solutions to the related set of nonlinear dynamical system is discussed.

The geometry of dented pentagram maps

Boris Khesin, Fedor Soloviev (2016)

Journal of the European Mathematical Society

We propose a new family of natural generalizations of the pentagram map from 2D to higher dimensions and prove their integrability on generic twisted and closed polygons. In dimension d there are d 1 such generalizations called dented pentagram maps, and we describe their geometry, continuous limit, and Lax representations with a spectral parameter. We prove algebraic-geometric integrability of the dented pentagram maps in the 3D case and compare the dimensions of invariant tori for the dented maps...

Currently displaying 1 – 20 of 39

Page 1 Next