The solution of general KdV equation in a class of steplike functions.
The Stieltjes spectral matrix measure of the doubly infinite Jacobi matrix associated with a Toda -soliton is computed, using Sato theory. The result is used to give an explicit expansion of the fundamental solution of some discrete heat equations, in a series of Jackson’s -Bessel functions. For Askey-Wilson type solitons, this expansion reduces to a finite sum.
Equivalence is established between a special class of Painlevé VI equations parametrized by a conformal dimension , time dependent Euler top equations, isomonodromic deformations and three-dimensional Frobenius manifolds. The isomonodromic tau function and solutions of the Euler top equations are explicitly constructed in terms of Wronskian solutions of the 2-vector 1-constrained symplectic Kadomtsev-Petviashvili (CKP) hierarchy by means of Grassmannian formulation. These Wronskian solutions give...
In this paper we describe the close relationship between invariant evolutions of projective curves and the Hamiltonian evolutions of Adler, Gel'fand and Dikii. We also show how KdV evolutions are related as well to invariant evolutions of projective surfaces.
This text is a survey of recent results on traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity. We present the existence, nonexistence and stability results and we describe the main ideas used in proofs.