Previous Page 2

Displaying 21 – 27 of 27

Showing per page

Distribution function inequalities for the density of the area integral

R. Banuelos, C. N. Moore (1991)

Annales de l'institut Fourier

We prove good- λ inequalities for the area integral, the nontangential maximal function, and the maximal density of the area integral. This answers a question raised by R. F. Gundy. We also prove a Kesten type law of the iterated logarithm for harmonic functions. Our Theorems 1 and 2 are for Lipschitz domains. However, all our results are new even in the case of R + 2 .

Divergence of general operators on sets of measure zero

G. A. Karagulyan (2010)

Colloquium Mathematicae

We consider sequences of linear operators Uₙ with a localization property. It is proved that for any set E of measure zero there exists a set G for which U G ( x ) diverges at each point x ∈ E. This result is a generalization of analogous theorems known for the Fourier sum operators with respect to different orthogonal systems.

Double sine series with nonnegative coefficients and Lipschitz classes

Vanda Fülöp (2006)

Colloquium Mathematicae

Denote by f s s ( x , y ) the sum of a double sine series with nonnegative coefficients. We present necessary and sufficient coefficient conditions in order that f s s belongs to the two-dimensional multiplicative Lipschitz class Lip(α,β) for some 0 < α ≤ 1 and 0 < β ≤ 1. Our theorems are extensions of the corresponding theorems by Boas for single sine series.

Duality properties and Riesz representation theorem in Besicovitch-Musielak-Orlicz space of almost periodic functions

A. Daoui, Mohamed Morsli, M. Smaali (2012)

Commentationes Mathematicae Universitatis Carolinae

This paper is an extension of the work done in [Morsli M., Bedouhene F., Boulahia F., Duality properties and Riesz representation theorem in the Besicovitch-Orlicz space of almost periodic functions, Comment. Math. Univ. Carolin. 43 (2002), no. 1, 103--117] to the Besicovitch-Musielak-Orlicz space of almost periodic functions. Necessary and sufficient conditions for the reflexivity of this space are given. A Riesz type ``duality representation theorem'' is also stated.

Duality properties and Riesz representation theorem in the Besicovitch-Orlicz space of almost periodic functions

Mohamed Morsli, Fazia Bedouhene, Fatiha Boulahia (2002)

Commentationes Mathematicae Universitatis Carolinae

In [6], the classical Riesz representation theorem is extended to the class of Besicovitch space of almost periodic functions B q  a.p., q ] 1 , + [ . It is also shown that this space is reflexive. We shall consider here such results in the context of Orlicz spaces, namely in the class of Besicovitch-Orlicz space of almost periodic functions B φ  a.p., where φ is an Orlicz function.

Currently displaying 21 – 27 of 27

Previous Page 2