Displaying 21 – 40 of 60

Showing per page

Entrelacement de co-Poisson

Jean-François Burnol (2007)

Annales de l’institut Fourier

On connaît le lien intime qui existe entre les équations fonctionnelles des fonctions L et les formules sommatoires dont le prototype est donné par celle de Poisson. Ce lien fait intervenir la transformation intégrale de Fourier et ses généralisations. Ici, nous réexaminons la signification harmonique (ainsi qu’hilbertienne et distributionnelle) des équations fonctionnelles ayant la forme la plus simple, à savoir, celle s’appliquant pour la fonction dzêta de Riemann et les séries L de Dirichlet...

Equicontinuous families of operators generating mean periodic maps

Valentina Casarino (1999)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The existence of mean periodic functions in the sense of L. Schwartz, generated, in various ways, by an equicontinuous group U or an equicontinuous cosine function C forces the spectral structure of the infinitesimal generator of U or C . In particular, it is proved under fairly general hypotheses that the spectrum has no accumulation point and that the continuous spectrum is empty.

Ergodicité et pureté des produits de Riesz

François Parreau (1990)

Annales de l'institut Fourier

On montre que les produits de Riesz sur le tore sont des mesures ergodiques sous une condition de lacunarité pour les fréquences, indépendamment de toute propriété arithmétique, et que cette condition est la meilleure possible de ce point de vue. On établit un critère analogue pour la propriété de pureté discutés précédemment par B. Host et l’auteur, ce qui fournit l’exemple d’une mesure pure étrangère à toutes ses translatées et en particulier non ergodique.

Espaces BMO, inégalités de Paley et multiplicateurs idempotents

Hubert Lelièvre (1997)

Studia Mathematica

Generalizing the classical BMO spaces defined on the unit circle with vector or scalar values, we define the spaces B M O ψ q ( ) and B M O ψ q ( , B ) , where ψ q ( x ) = e x q - 1 for x ≥ 0 and q ∈ [1,∞[, and where B is a Banach space. Note that B M O ψ 1 ( ) = B M O ( ) and B M O ψ 1 ( , B ) = B M O ( , B ) by the John-Nirenberg theorem. Firstly, we study a generalization of the classical Paley inequality and improve the Blasco-Pełczyński theorem in the vector case. Secondly, we compute the idempotent multipliers of B M O ψ q ( ) . Pisier conjectured that the supports of idempotent multipliers of L ψ q ( ) form a Boolean...

Estimates of one-dimensional oscillatory integrals

Detlef Muller (1983)

Annales de l'institut Fourier

We study one-dimensional oscillator integrals which arise as Fourier-Stieltjes transforms of smooth, compactly supported measures on smooth curves in Euclidean spaces and determine their decay at infinity, provided the curves satisfy certain geometric conditions.

Estimates with global range for oscillatory integrals with concave phase

Bjorn Gabriel Walther (2002)

Colloquium Mathematicae

We consider the maximal function | | ( S a f ) [ x ] | | L [ - 1 , 1 ] where ( S a f ) ( t ) ( ξ ) = e i t | ξ | a f ̂ ( ξ ) and 0 < a < 1. We prove the global estimate | | S a f | | L ² ( , L [ - 1 , 1 ] ) C | | f | | H s ( ) , s > a/4, with C independent of f. This is known to be almost sharp with respect to the Sobolev regularity s.

Currently displaying 21 – 40 of 60