Displaying 101 – 120 of 211

Showing per page

In a shadow of the RH: Cyclic vectors of Hardy spaces on the Hilbert multidisc

Nikolai Nikolski (2012)

Annales de l’institut Fourier

Completeness of a dilation system ( ϕ ( n x ) ) n 1 on the standard Lebesgue space L 2 ( 0 , 1 ) is considered for 2-periodic functions ϕ . We show that the problem is equivalent to an open question on cyclic vectors of the Hardy space H 2 ( 𝔻 2 ) on the Hilbert multidisc 𝔻 2 . Several simple sufficient conditions are exhibited, which include however practically all previously known results (Wintner; Kozlov; Neuwirth, Ginsberg, and Newman; Hedenmalm, Lindquist, and Seip). For instance, each of the following conditions implies cyclicity...

Interpolating sequences, Carleson measures and Wirtinger inequality

Eric Amar (2008)

Annales Polonici Mathematici

Let S be a sequence of points in the unit ball of ℂⁿ which is separated for the hyperbolic distance and contained in the zero set of a Nevanlinna function. We prove that the associated measure μ S : = a S ( 1 - | a | ² ) δ a is bounded, by use of the Wirtinger inequality. Conversely, if X is an analytic subset of such that any δ -separated sequence S has its associated measure μ S bounded by C/δⁿ, then X is the zero set of a function in the Nevanlinna class of . As an easy consequence, we prove that if S is a dual bounded sequence...

Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators

Sibei Yang (2015)

Czechoslovak Mathematical Journal

Let L : = - Δ + V be a Schrödinger operator on n with n 3 and V 0 satisfying Δ - 1 V L ( n ) . Assume that ϕ : n × [ 0 , ) [ 0 , ) is a function such that ϕ ( x , · ) is an Orlicz function, ϕ ( · , t ) 𝔸 ( n ) (the class of uniformly Muckenhoupt weights). Let w be an L -harmonic function on n with 0 < C 1 w C 2 , where C 1 and C 2 are positive constants. In this article, the author proves that the mapping H ϕ , L ( n ) f w f H ϕ ( n ) is an isomorphism from the Musielak-Orlicz-Hardy space associated with L , H ϕ , L ( n ) , to the Musielak-Orlicz-Hardy space H ϕ ( n ) under some assumptions on ϕ . As applications, the author further obtains the...

Martingale operators and Hardy spaces generated by them

Ferenc Weisz (1995)

Studia Mathematica

Martingale Hardy spaces and BMO spaces generated by an operator T are investigated. An atomic decomposition of the space H p T is given if the operator T is predictable. We generalize the John-Nirenberg theorem, namely, we prove that the B M O q spaces generated by an operator T are all equivalent. The sharp operator is also considered and it is verified that the L p norm of the sharp operator is equivalent to the H p T norm. The interpolation spaces between the Hardy and BMO spaces are identified by the real method....

Maximal and area integral characterizations of Hardy-Soboley spaces in the unit ball of Cn.

Patrick Ahern, Joaquim Bruna (1988)

Revista Matemática Iberoamericana

In this paper we deal with several characterizations of the Hardy-Sobolev spaces in the unit ball of Cn, that is, spaces of holomorphic functions in the ball whose derivatives up to a certain order belong to the classical Hardy spaces. Some of our characterizations are in terms of maximal functions, area functions or Littlewood-Paley functions involving only complex-tangential derivatives. A special case of our results is a characterization of Hp itself involving only complex-tangential derivatives....

Multi-dimensional Fejér summability and local Hardy spaces

Ferenc Weisz (2009)

Studia Mathematica

It is proved that the multi-dimensional maximal Fejér operator defined in a cone is bounded from the amalgam Hardy space W ( h p , ) to W ( L p , ) . This implies the almost everywhere convergence of the Fejér means in a cone for all f W ( L , ) , which is larger than L ( d ) .

Multilinear Fourier multipliers with minimal Sobolev regularity, I

Loukas Grafakos, Hanh Van Nguyen (2016)

Colloquium Mathematicae

We find optimal conditions on m-linear Fourier multipliers that give rise to bounded operators from products of Hardy spaces H p k , 0 < p k 1 , to Lebesgue spaces L p . These conditions are expressed in terms of L²-based Sobolev spaces with sharp indices within the classes of multipliers we consider. Our results extend those obtained in the linear case (m = 1) by Calderón and Torchinsky (1977) and in the bilinear case (m = 2) by Miyachi and Tomita (2013). We also prove a coordinate-type Hörmander integral condition...

Multiplier extension and sampling theorem on Hardy spaces.

Sun Qiyu (1994)

Publicacions Matemàtiques

Extension by integer translates of compactly supported function for multiplier spaces on periodic Hardy spaces to multiplier spaces on Hardy spaces is given. Shannon sampling theorem is extended to Hardy spaces.

Multiplier operators on product spaces

Hung Viet Le (2002)

Studia Mathematica

The author proves the boundedness for a class of multiplier operators on product spaces. This extends a result obtained by Lung-Kee Chen in 1994.

Multiplier transformations on H p spaces

Daning Chen, Dashan Fan (1998)

Studia Mathematica

The authors obtain some multiplier theorems on H p spaces analogous to the classical L p multiplier theorems of de Leeuw. The main result is that a multiplier operator ( T f ) ( x ) = λ ( x ) f ̂ ( x ) ( λ C ( ...

Musielak-Orlicz-Hardy Spaces Associated with Operators Satisfying Reinforced Off-Diagonal Estimates

The Anh Bui, Jun Cao, Luong Dang Ky, Dachun Yang, Sibei Yang (2013)

Analysis and Geometry in Metric Spaces

Let X be a metric space with doubling measure and L a one-to-one operator of type ω having a bounded H∞ -functional calculus in L2(X) satisfying the reinforced (pL; qL) off-diagonal estimates on balls, where pL ∊ [1; 2) and qL ∊ (2;∞]. Let φ : X × [0;∞) → [0;∞) be a function such that φ (x;·) is an Orlicz function, φ(·;t) ∊ A∞(X) (the class of uniformly Muckenhoupt weights), its uniformly critical upper type index l(φ) ∊ (0;1] and φ(·; t) satisfies the uniformly reverse Hölder inequality of order...

Necessary conditions for the L p -convergence ( 0 < p < 1 ) of single and double trigonometric series

Xhevat Z. Krasniqi, Péter Kórus, Ferenc Móricz (2014)

Mathematica Bohemica

We give necessary conditions in terms of the coefficients for the convergence of a double trigonometric series in the L p -metric, where 0 < p < 1 . The results and their proofs have been motivated by the recent papers of A. S. Belov (2008) and F. Móricz (2010). Our basic tools in the proofs are the Hardy-Littlewood inequality for functions in H p and the Bernstein-Zygmund inequalities for the derivatives of trigonometric polynomials and their conjugates in the L p -metric, where 0 < p < 1 .

Notes on interpolation of Hardy spaces

Quanhua Xu (1992)

Annales de l'institut Fourier

Let H p denote the usual Hardy space of analytic functions on the unit disc ( 0 &lt; p ) . We prove that for every function f H 1 there exists a linear operator T defined on L 1 ( T ) which is simultaneously bounded from L 1 ( T ) to H 1 and from L ( T ) to H such that T ( f ) = f . Consequently, we get the following results ( 1 p 0 , p 1 ) :1) ( H p 0 , H p 1 ) is a Calderon-Mitjagin couple;2) for any interpolation functor F , we have F ( H p 0 , H p 1 ) = H ( F ( L p 0 ( T ) , L p 1 ( T ) ) ) , where H ( F ( L p 0 ( T ) , L p 1 ( T ) ) ) denotes the closed subspace of F ( L p 0 ( T ) , L p 1 ( T ) ) of all functions whose Fourier coefficients vanish on negative integers.These results also extend to Hardy...

Currently displaying 101 – 120 of 211