Displaying 221 – 240 of 1022

Showing per page

Control Norms for Large Control Times

Sergei Ivanov (2010)

ESAIM: Control, Optimisation and Calculus of Variations

A control system of the second order in time with control u = u ( t ) L 2 ( [ 0 , T ] ; U ) is considered. If the system is controllable in a strong sense and uT is the control steering the system to the rest at time T, then the L2–norm of uT decreases as 1 / T while the L 1 ( [ 0 , T ] ; U ) –norm of uT is approximately constant. The proof is based on the moment approach and properties of the relevant exponential family. Results are applied to the wave equation with boundary or distributed controls.

Coorbit space theory for quasi-Banach spaces

Holger Rauhut (2007)

Studia Mathematica

We generalize the classical coorbit space theory developed by Feichtinger and Gröchenig to quasi-Banach spaces. As a main result we provide atomic decompositions for coorbit spaces defined with respect to quasi-Banach spaces. These atomic decompositions are used to prove fast convergence rates of best n-term approximation schemes. We apply the abstract theory to time-frequency analysis of modulation spaces M m p , q , 0 < p,q ≤ ∞.

Costruzione di un sistema di polinomi ortonormali a partire da due suoi polinomi consecutivi

Aldo Ghizzetti (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The following result is proved: to give two consecutive polynomials P n ( x ) , P n + 1 ( x ) of an orthonormal system is equivalent to assign the first 2 n + 3 moments of the Lebesgue-Stieltjes measure associated with the system.

Critical length for a Beurling type theorem

Michel Mehrenberger (2005)

Bollettino dell'Unione Matematica Italiana

In a recent paper [3] C. Baiocchi, V. Komornik and P. Loreti obtained a generalisation of Parseval's identity by means of divided differences. We give here a proof of the optimality of that theorem.

Curriculum vita of Prof. Vasil Atanasov Popov

Ivanov, Kamen, Petrushev, Pencho (2002)

Serdica Mathematical Journal

Our primary goal in this preamble is to highlight the best of Vasil Popov’s mathematical achievements and ideas. V. Popov showed his extraordinary talent for mathematics in his early papers in the (typically Bulgarian) area of approximation in the Hausdorff metric. His results in this area are very well presented in the monograph of his advisor Bl. Sendov, “Hausdorff Approximation”.

Cyclic subspaces for unitary representations of LCA groups; generalized Zak transform

Eugenio Hernández, Hrvoje Šikić, Guido Weiss, Edward Wilson (2010)

Colloquium Mathematicae

We just published a paper showing that the properties of the shift invariant spaces, ⟨f⟩, generated by the translates by ℤⁿ of an f in L²(ℝⁿ) correspond to the properties of the spaces L²(𝕋ⁿ,p), where the weight p equals [f̂,f̂]. This correspondence helps us produce many new properties of the spaces ⟨f⟩. In this paper we extend this method to the case where the role of ℤⁿ is taken over by locally compact abelian groups G, L²(ℝⁿ) is replaced by a separable Hilbert space on which a unitary representation...

Daubechies wavelets on intervals with application to BVPs

Václav Finěk (2004)

Applications of Mathematics

In this paper, Daubechies wavelets on intervals are investigated. An analytic technique for evaluating various types of integrals containing the scaling functions is proposed; they are compared with classical techniques. Finally, these results are applied to two-point boundary value problems.

Decomposition systems for function spaces

G. Kyriazis (2003)

Studia Mathematica

Let Θ : = θ I e : e E , I D be a decomposition system for L ( d ) indexed over D, the set of dyadic cubes in d , and a finite set E, and let Θ ̃ : = Θ ̃ I e : e E , I D be the corresponding dual functionals. That is, for every f L ( d ) , f = e E I D f , Θ ̃ I e θ I e . We study sufficient conditions on Θ,Θ̃ so that they constitute a decomposition system for Triebel-Lizorkin and Besov spaces. Moreover, these conditions allow us to characterize the membership of a distribution f in these spaces by the size of the coefficients f , Θ ̃ I e , e ∈ E, I ∈ D. Typical examples of such decomposition systems...

Density estimation with quadratic loss: a confidence intervals method

Pierre Alquier (2008)

ESAIM: Probability and Statistics

We propose a feature selection method for density estimation with quadratic loss. This method relies on the study of unidimensional approximation models and on the definition of confidence regions for the density thanks to these models. It is quite general and includes cases of interest like detection of relevant wavelets coefficients or selection of support vectors in SVM. In the general case, we prove that every selected feature actually improves the performance of the estimator. In the case...

Currently displaying 221 – 240 of 1022