Multipliers for the convolution algebra of left and right K-finite compactly supported smooth functions on a semi-simple Lie group.
P. Delorme (1984)
Inventiones mathematicae
Thomas Ramsey, Yitzhak Weit (1987)
Colloquium Mathematicae
C. Kalisa, B. Torrésani (1993)
Annales de l'I.H.P. Physique théorique
Lawrence Corwin (1984)
Journal für die reine und angewandte Mathematik
Andrzej Hulanicki, Joe Jenkins (1987)
Studia Mathematica
Andrzej Hulanicki, Joe Jenkins (1984)
Studia Mathematica
Katori, Makoto, Tanemura, Hideki (2003)
Electronic Communications in Probability [electronic only]
Vodop'yanov, S.K., Kudryavtseva, N.A. (2009)
Sibirskij Matematicheskij Zhurnal
Przemysław Gadziński (2000)
Colloquium Mathematicae
We study the densities of the semigroup generated by the operator on the 3-dimensional Heisenberg group. We show that the 7th derivatives of the densities have a jump discontinuity. Outside the plane x=0 the densities are . We give explicit spectral decomposition of images of in representations.
Waldemar Hebisch (1992)
Mathematische Zeitschrift
J. Boidol, J. Ludwig, D. Müller (1988)
Studia Mathematica
Yitzhak Weit (1980)
Annales de l'institut Fourier
Schwartz’s Theorem in spectral synthesis of continuous functions on the real is generalized to the Euclidean motion group. The rightsided analogue of Schwartz’s Theorem for the motion group is reduced to the study of some invariant subspaces of continuous functions on .
Jacek Dziubański (1993)
Colloquium Mathematicae
Dariusz Buraczewski (2007)
Annales de l'I.H.P. Probabilités et statistiques
Jean Ludwig (1990)
Mathematische Annalen
Anders Melin (1981)
Journées équations aux dérivées partielles
D. Shelstad, R.P. Langlands (1987)
Mathematische Annalen
Brandolini, L., Rigoli, M., Setti, A.G. (1996)
Electronic Research Announcements of the American Mathematical Society [electronic only]
Roberto J. Miatello (1979)
Manuscripta mathematica
T. Godoy, L. Saal (2001)
Studia Mathematica
Let Hₙ be the (2n+1)-dimensional Heisenberg group, let p,q ≥ 1 be integers satisfying p+q=n, and let , where X₁,Y₁,...,Xₙ,Yₙ,T denotes the standard basis of the Lie algebra of Hₙ. We compute explicitly a relative fundamental solution for L.