Displaying 581 – 600 of 1716

Showing per page

Global existence of solutions for the non linear Boltzmann equation of semiconductor physics.

Francisco José Mustieles (1990)

Revista Matemática Iberoamericana

In this paper we give a proof of the existence and uniqueness of smooth solutions for the nonlinear semiconductor Boltzmann equation. The method used allows to obtain global existence in time and uniqueness for dimensions 1 and 2. For dimension 3 we can only assure local existence in time and uniqueness. First, we define a sequence of solutions for a linearized equation and then, we prove the strong convergence of the sequence in a suitable space. The metod relies on the use of interpolation estimates...

Global stability of steady solutions for a model in virus dynamics

Hermano Frid, Pierre-Emmanuel Jabin, Benoît Perthame (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a simple model for the immune system in which virus are able to undergo mutations and are in competition with leukocytes. These mutations are related to several other concepts which have been proposed in the literature like those of shape or of virulence – a continuous notion. For a given species, the system admits a globally attractive critical point. We prove that mutations do not affect this picture for small perturbations and under strong structural assumptions. Based on numerical...

Global Stability of Steady Solutions for a Model in Virus Dynamics

Hermano Frid, Pierre-Emmanuel Jabin, Benoît Perthame (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a simple model for the immune system in which virus are able to undergo mutations and are in competition with leukocytes. These mutations are related to several other concepts which have been proposed in the literature like those of shape or of virulence – a continuous notion. For a given species, the system admits a globally attractive critical point. We prove that mutations do not affect this picture for small perturbations and under strong structural assumptions. Based on numerical...

Gradient flows of the entropy for jump processes

Matthias Erbar (2014)

Annales de l'I.H.P. Probabilités et statistiques

We introduce a new transport distance between probability measures on d that is built from a Lévy jump kernel. It is defined via a non-local variant of the Benamou–Brenier formula. We study geometric and topological properties of this distance, in particular we prove existence of geodesics. For translation invariant jump kernels we identify the semigroup generated by the associated non-local operator as the gradient flow of the relative entropy w.r.t. the new distance and show that the entropy is...

Haar wavelets method for solving Pocklington's integral equation

M. Shamsi, Mohsen Razzaghi, J. Nazarzadeh, Masoud Shafiee (2004)

Kybernetika

A simple and effective method based on Haar wavelets is proposed for the solution of Pocklington’s integral equation. The properties of Haar wavelets are first given. These wavelets are utilized to reduce the solution of Pocklington’s integral equation to the solution of algebraic equations. In order to save memory and computation time, we apply a threshold procedure to obtain sparse algebraic equations. Through numerical examples, performance of the present method is investigated concerning the...

Hammerstein equations with an integral over a noncompact domain

Robert Stańczy (1998)

Annales Polonici Mathematici

The existence of solutions of Hammerstein equations in the space of bounded and continuous functions is proved. It is obtained by the Schauder fixed point theorem using a compactness theorem. The result is applied to Wiener-Hopf equations and to ODE's.

Hammerstein–Nemytskii Type Nonlinear Integral Equations on Half-line in Space L 1 ( 0 , + ) L ( 0 , + )

Aghavard Kh. Khachatryan, Khachatur A. Khachatryan (2013)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The paper studies a construction of nontrivial solution for a class of Hammerstein–Nemytskii type nonlinear integral equations on half-line with noncompact Hammerstein integral operator, which belongs to space L 1 ( 0 , + ) L ( 0 , + ) . This class of equations is the natural generalization of Wiener-Hopf type conservative integral equations. Examples are given to illustrate the results. For one type of considering equations continuity and uniqueness of the solution is established.

Hilbert transforms and the Cauchy integral in euclidean space

Andreas Axelsson, Kit Ian Kou, Tao Qian (2009)

Studia Mathematica

We generalize the notions of harmonic conjugate functions and Hilbert transforms to higher-dimensional euclidean spaces, in the setting of differential forms and the Hodge-Dirac system. These harmonic conjugates are in general far from being unique, but under suitable boundary conditions we prove existence and uniqueness of conjugates. The proof also yields invertibility results for a new class of generalized double layer potential operators on Lipschitz surfaces and boundedness of related Hilbert...

Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations

Guy Barles, Emmanuel Chasseigne, Cyril Imbert (2011)

Journal of the European Mathematical Society

This paper is concerned with the Hölder regularity of viscosity solutions of second-order, fully non-linear elliptic integro-differential equations. Our results rely on two key ingredients: first we assume that, at each point of the domain, either the equation is strictly elliptic in the classical fully non-linear sense, or (and this is the most original part of our work) the equation is strictly elliptic in a non-local non-linear sense we make precise. Next we impose some regularity and growth...

Currently displaying 581 – 600 of 1716