Displaying 2101 – 2120 of 2683

Showing per page

Sur une famille de cônes réticulés avec domination (les D -cônes)

Marouan Ajlani (1974)

Annales de l'institut Fourier

Il s’agit de représenter certains cônes réticulés par des cônes adaptés de fonctions continues sur un espace localement compact. Nous étudions le cône des opérateurs positifs majorés par un multiple de l’identité sur un cône réticulé, le représentons et donnons des conditions nécessaires et suffisantes pour qu’il soit riche (théorème d’Urysohn). Quelques illustrations sont données à la fin dans le cadre des espaces de type M de Kakutani.

Surjective convolution operators on spaces of distributions.

Leonhard Frerick, Jochen Wengenroth (2003)

RACSAM

We review recent developments in the theory of inductive limits and use them to give a new and rather easy proof for Hörmander?s characterization of surjective convolution operators on spaces of Schwartz distributions.

Symmetric stochastic matrices with given row sums.

Ryszard Grzaslewicz (1990)

Revista Matemática de la Universidad Complutense de Madrid

Characterizations of extreme infinite symmetric stochastic matrices with respect to arbitrary non-negative vector r are given.

Tame Köthe Sequence Spaces are Quasi-Normable

Krzysztof Piszczek (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

We show that every tame Fréchet space admits a continuous norm and that every tame Köthe sequence space is quasi-normable.

Tameness in Fréchet spaces of analytic functions

Aydın Aytuna (2016)

Studia Mathematica

A Fréchet space with a sequence | | · | | k k = 1 of generating seminorms is called tame if there exists an increasing function σ: ℕ → ℕ such that for every continuous linear operator T from into itself, there exist N₀ and C > 0 such that | | T ( x ) | | C | | x | | σ ( n ) ∀x ∈ , n ≥ N₀. This property does not depend upon the choice of the fundamental system of seminorms for and is a property of the Fréchet space . In this paper we investigate tameness in the Fréchet spaces (M) of analytic functions on Stein manifolds M equipped with the compact-open...

Taylorian points of an algebraic curve and bivariate Hermite interpolation

Len Bos, Jean-Paul Calvi (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We introduce and study the notion of Taylorian points of algebraic curves in 2 , which enables us to define intrinsic Taylor interpolation polynomials on curves. These polynomials in turn lead to the construction of a well-behaved Hermitian scheme on curves, of which we give several examples. We show that such Hermitian schemes can be collected to obtain Hermitian bivariate polynomial interpolation schemes.

Currently displaying 2101 – 2120 of 2683