Displaying 2121 – 2140 of 2683

Showing per page

Tensor products of Hilbert modules over locally C * -algebras

Maria Joiţa (2004)

Czechoslovak Mathematical Journal

In this paper the tensor products of Hilbert modules over locally C * -algebras are defined and their properties are studied. Thus we show that most of the basic properties of the tensor products of Hilbert C * -modules are also valid in the context of Hilbert modules over locally C * -algebras.

Tensor stable Fréchet and (DF)-spaces.

José Bonet, Juan Carlos Díaz, Jari Taskinen (1991)

Collectanea Mathematica

In this paper we introduce and investigate classes of Fréchet and (DF)-spaces which constitute a very general frame in which the problem of topologies of Grothendieck and some related dual questions have a positive answer. Many examples of spaces in theses classes are provided, in particular spaces of sequences and functions. New counterexamples to the problems of Grothendieck are given.

The algebraic dimension of linear metric spaces and Baire properties of their hyperspaces.

Taras Banakh, Anatolij Plichko (2006)

RACSAM

Answering a question of Halbeisen we prove (by two different methods) that the algebraic dimension of each infinite-dimensional complete linear metric space X equals the size of X. A topological method gives a bit more: the algebraic dimension of a linear metric space X equals |X| provided the hyperspace K(X) of compact subsets of X is a Baire space. Studying the interplay between Baire properties of a linear metric space X and its hyperspace, we construct a hereditarily Baire linear metric space...

The AR-Property of the spaces of closed convex sets

Katsuro Sakai, Masato Yaguchi (2006)

Colloquium Mathematicae

Let C o n v H ( X ) , C o n v A W ( X ) and C o n v W ( X ) be the spaces of all non-empty closed convex sets in a normed linear space X admitting the Hausdorff metric topology, the Attouch-Wets topology and the Wijsman topology, respectively. We show that every component of C o n v H ( X ) and the space C o n v A W ( X ) are AR. In case X is separable, C o n v W ( X ) is locally path-connected.

The Ascoli property for function spaces and the weak topology of Banach and Fréchet spaces

S. Gabriyelyan, J. Kąkol, G. Plebanek (2016)

Studia Mathematica

Following Banakh and Gabriyelyan (2016) we say that a Tychonoff space X is an Ascoli space if every compact subset of C k ( X ) is evenly continuous; this notion is closely related to the classical Ascoli theorem. Every k -space, hence any k-space, is Ascoli. Let X be a metrizable space. We prove that the space C k ( X ) is Ascoli iff C k ( X ) is a k -space iff X is locally compact. Moreover, C k ( X ) endowed with the weak topology is Ascoli iff X is countable and discrete. Using some basic concepts from probability theory and...

Currently displaying 2121 – 2140 of 2683