Displaying 2181 – 2200 of 2683

Showing per page

The Gruenhage property, property *, fragmentability, and σ-isolated networks in generalized ordered spaces

Harold Bennett, David Lutzer (2013)

Fundamenta Mathematicae

We examine the Gruenhage property, property * (introduced by Orihuela, Smith, and Troyanski), fragmentability, and the existence of σ-isolated networks in the context of linearly ordered topological spaces (LOTS), generalized ordered spaces (GO-spaces), and monotonically normal spaces. We show that any monotonically normal space with property * or with a σ-isolated network must be hereditarily paracompact, so that property * and the Gruenhage property are equivalent in monotonically normal spaces....

The Hypercyclicity Criterion for sequences of operators

L. Bernal-González, K.-G. Grosse-Erdmann (2003)

Studia Mathematica

We show that under no hypotheses on the density of the ranges of the mappings involved, an almost-commuting sequence (Tₙ) of operators on an F-space X satisfies the Hypercyclicity Criterion if and only if it has a hereditarily hypercyclic subsequence ( T n k ) , and if and only if the sequence (Tₙ ⊕ Tₙ) is hypercyclic on X × X. This strengthens and extends a recent result due to Bès and Peris. We also find a new characterization of the Hypercyclicity Criterion in terms of a condition introduced by Godefroy...

The intersection convolution of relations and the Hahn-Banach type theorems

Árpád Száz (1998)

Annales Polonici Mathematici

By introducing the intersection convolution of relations, we prove a natural generalization of an extension theorem of B. Rodrí guez-Salinas and L. Bou on linear selections which is already a substantial generalization of the classical Hahn-Banach theorems. In particular, we give a simple neccesary and sufficient condition in terms of the intersection convolution of a homogeneous relation and its partial linear selections in order that every partial linear selection of this relation can have an...

The Lindelöf property and σ-fragmentability

B. Cascales, I. Namioka (2003)

Fundamenta Mathematicae

In the previous paper, we, together with J. Orihuela, showed that a compact subset X of the product space [ - 1 , 1 ] D is fragmented by the uniform metric if and only if X is Lindelöf with respect to the topology γ(D) of uniform convergence on countable subsets of D. In the present paper we generalize the previous result to the case where X is K-analytic. Stated more precisely, a K-analytic subspace X of [ - 1 , 1 ] D is σ-fragmented by the uniform metric if and only if (X,γ(D)) is Lindelöf, and if this is the case then...

Currently displaying 2181 – 2200 of 2683