The space of all bounded operators on Hilbert space does not have the approximation property
Let Ω be an open connected subset of . We show that the space A(Ω) of real-analytic functions on Ω has no (Schauder) basis. One of the crucial steps is to show that all metrizable complemented subspaces of A(Ω) are finite-dimensional.
We give some new properties of the space and we apply them to the σ-core theory. These results generalize those by Choudhary and Yardimci.
An example is given of a semisimple commutative Banach algebra that has the strong spectral extension property but fails the multiplicative Hahn-Banach property. This answers a question posed by M. J. Meyer in [4].
Let X be a real or complex vector space equipped with the strongest vector space topology . Besides the result announced in the title we prove that X is uncountable-dimensional if and only if it is not locally pseudoconvex.