Alternative axioms for statistical physical theories
We characterize Banach lattices on which each regular order weakly compact (resp. b-weakly compact, almost Dunford-Pettis, Dunford-Pettis) operator is AM-compact.
A general existence and uniqueness result of Picard-Lindelöf type is proved for ordinary differential equations in Fréchet spaces as an application of a generalized Nash-Moser implicit function theorem. Many examples show that the assumptions of the main result are natural. Applications are given for the Fréchet spaces , , , , for Köthe sequence spaces, and for the general class of subbinomic Fréchet algebras.
This note contains an approximation theorem that implies that every compact subset of is a good compact set in the sense of Martineau. The property in question is fundamental for the extension of analytic functionals. The approximation theorem depends on a finiteness result about certain polynomially convex hulls.
This paper presents an elementary proof and a generalization of a theorem due to Abramovich and Lipecki, concerning the nonexistence of closed linear sublattices of finite codimension in nonatomic locally solid linear lattices with the Lebesgue property.
Let X be a Banach space, u ∈ X** and K, Z two subsets of X**. Denote by d(u,Z) and d(K,Z) the distances to Z from the point u and from the subset K respectively. The Krein-Smulian Theorem asserts that the closed convex hull of a weakly compact subset of a Banach space is weakly compact; in other words, every w*-compact subset K ⊂ X** such that d(K,X) = 0 satisfies d(cow*(K),X) = 0.We extend this result in the following way: if Z ⊂ X is a closed subspace of X and K ⊂ X** is a w*-compact subset of...