A characterization of weighted -spaces of holomorphic functions having the dual density condition
We characterize when weighted -spaces of holomorphic functions have the dual density condition, when the weights are radial and grow logarithmically.
We characterize when weighted -spaces of holomorphic functions have the dual density condition, when the weights are radial and grow logarithmically.
In this article we give some properties of the tensor product, with the and topologies, of two locally convex spaces. As a consequence we prove that the theory of M. de Wilde of the closed graph theorem does not contain the closed graph theorem of L. Schwartz.
In [5] and [10], statistical-conservative and -conservative matrices were characterized. In this note we have determined a class of statistical and -conservative matrices studying some inequalities which are analogous to Knopp’s Core Theorem.
In this paper, we give some necessary and sufficient conditions such that each positive operator between two Banach lattices is weak almost Dunford-Pettis, and we derive some interesting results about the weak Dunford-Pettis property in Banach lattices.
We show that a complex Banach space is weakly Lindelöf determined if and only if the dual unit ball of any equivalent norm is weak* Valdivia compactum. We deduce that a complex Banach space X is weakly Lindelöf determined if and only if any nonseparable Banach space isomorphic to a complemented subspace of X admits a projectional resolution of the identity. These results complete the previous ones on real spaces.