Burnside's Theorem for the Fréchet Space .
Soient des éléments d’une -algèbre commutative unifère . On définit et étudie un “spectre” de qui dépend de la croissance des fonctions de l’égalité spectraleprès du spectre simultané. À partir des propriétés de ce spectre, on construit un calcul fonctionnel qui, réduit au cas banachique, s’étend à certaines fonctions supposées seulement holomorphes à l’intérieur du spectre simultané. Ce calcul fonctionnel permet aussi d’étudier la régularité des éléments et des fonctions .
In this paper we define new sequence spaces using the concepts of strong summability and boundedness of index of -th order difference sequences. We establish sufficient conditions for these spaces to reduce to certain spaces of null and bounded sequences.
Nous démontrons que la catégorie de von Neumann est équivalente à la catégorie des cônes autopolaires, facialement homogènes, complexes. Un cône dans un espace hilbertien réel est dit : 1) facialement homogène quand pour toute face de l’opérateur (Projection sur ) (Projection sur ) est une dérivation de (i.e. ) ; 2) complexe quand on s’est donné une structure d’algèbre de Lie complexe sur l’algèbre de Lie réelle des dérivations de , modulo son centre. Nous caractérisons les espaces...
We show that the cardinality of a compact convex set W in a topological linear space X satisfies the condition that . We also establish some relations between the cardinality of W and that of extrW provided X is locally convex. Moreover, we deal with the cardinality of the convex set E(μ) of all quasi-measure extensions of a quasi-measure μ, defined on an algebra of sets, to a larger algebra of sets, and relate it to the cardinality of extrE(μ).
In this paper we deal with Cesàro wedge and weak Cesàro wedge -spaces, and give several characterizations. Some applications of these spaces to general summability domains are also studied.