Compact maps and embeddings from an infinite type power series space to a finite type power series space.
A bounded closed convex set K in a Banach space X is said to have quasi-normal structure if each bounded closed convex subset H of K for which diam(H) > 0 contains a point u for which ∥u-x∥ < diam(H) for each x ∈ H. It is shown that if the convex sets on the unit sphere in X satisfy this condition (which is much weaker than the assumption that convex sets on the unit sphere are separable), then relative to various weak topologies, the unit ball in X is compact whenever it is countably compact....
In this note we present a result on compactness in certain Banach spaces of vector valued functions. We demonstrate an application of this result to the questions of existence of solutions of nonlinear differential inclusions on a Banach space.
For a polish space M and a Banach space E let B1 (M, E) be the space of first Baire class functions from M to E, endowed with the pointwise weak topology. We study the compact subsets of B1 (M, E) and show that the fundamental results proved by Rosenthal, Bourgain, Fremlin, Talagrand and Godefroy, in case E = R, also hold true in the general case. For instance: a subset of B1 (M, E) is compact iff it is sequentially (resp. countably) compact, the convex hull of a compact bounded subset of B1 (M,...
Compatible topologies and bornologies on modules are introduced and studied.
For a locally convex space E we prove that the space of n-symmetric tensors is complemented in the space of (n+1)-symmetric tensors endowed with the projective topology. Applications and related results are also given.
Our aim here is to announce some properties of complementation for spaces of symmetric tensor products and homogeneous continuous polynomials on a locally convex space E that have, in particular, consequences in the study of the property (BB)n,s recently introduced by Dineen [8].
We prove that the direct sum and the product of countably many copies of L1[0, 1] are primary locally convex spaces. We also give some related results.
The following result is proved: Let E be a complemented subspace with an r-finite-dimensional decomposition of a nuclear Köthe space λ(A). Then E has a basis.