Displaying 501 – 520 of 2679

Showing per page

Construction of standard exact sequences of power series spaces

Markus Poppenberg, Dietmar Vogt (1995)

Studia Mathematica

The following result is proved: Let Λ R p ( α ) denote a power series space of infinite or of finite type, and equip Λ R p ( α ) with its canonical fundamental system of norms, R ∈ 0,∞, 1 ≤ p < ∞. Then a tamely exact sequence (⁎) 0 Λ R p ( α ) Λ R p ( α ) Λ R p ( α ) 0 exists iff α is strongly stable, i.e. l i m n α 2 n / α n = 1 , and a linear-tamely exact sequence (*) exists iff α is uniformly stable, i.e. there is A such that l i m s u p n α K n / α n A < for all K. This result extends a theorem of Vogt and Wagner which states that a topologically exact sequence (*) exists iff α is stable, i.e. s u p n α 2 n / α n < .

Continuous linear extension operators on spaces of holomorphic functions on closed subgroups of a complex Lie group

Do Duc Thai, Dinh Huy Hoang (1999)

Annales Polonici Mathematici

We show that the restriction operator of the space of holomorphic functions on a complex Lie group to an analytic subset V has a continuous linear right inverse if it is surjective and if V is a finite branched cover over a connected closed subgroup Γ of G. Moreover, we show that if Γ and G are complex Lie groups and V ⊂ Γ × G is an analytic set such that the canonical projection π 1 : V Γ is finite and proper, then R V : O ( Γ × G ) I m R V O ( V ) has a right inverse

Currently displaying 501 – 520 of 2679