Unique reducibility of subsets of commutative topological groups and semigroups.
Let , i∈ I, and , j∈ J, be compact convex sets whose sets of extreme points are affinely independent and let φ be an affine homeomorphism of onto . We show that there exists a bijection b: I → J such that φ is the product of affine homeomorphisms of onto , i∈ I.
We prove that if 0 < p < 1 then a normalized unconditional basis of a complemented subspace of must be equivalent to a permutation of a subset of the canonical unit vector basis of . In particular, has unique unconditional basis up to permutation. Bourgain, Casazza, Lindenstrauss, and Tzafriri have previously proved the same result for .
We prove that the quasi-Banach spaces and (0 < p < 1) have a unique unconditional basis up to permutation. Bourgain, Casazza, Lindenstrauss and Tzafriri have previously proved that the same is true for the respective Banach envelopes and ℓ₁(ℓ₂). They used duality techniques which are not available in the non-locally convex case.
It is well known that some dense subspaces of a barrelled space could be not barrelled. Here we prove that dense subspaces of l∞ (Ω, X) are barrelled (unordered Baire-like or p?barrelled) spaces if they have ?enough? subspaces with the considered barrelledness property and if the normed space X has this barrelledness property.These dense subspaces are used in measure theory and its barrelledness is related with some sequences of unitary vectors.
Let X, Y be real Banach spaces and ε > 0. A standard ε-isometry f: X → Y is said to be (α,γ)-stable (with respect to for some α,γ > 0) if T is a linear operator with ||T|| ≤ α such that Tf- Id is uniformly bounded by γε on X. The pair (X,Y) is said to be stable if every standard ε-isometry f: X → Y is (α,γ)-stable for some α,γ > 0. The space X[Y] is said to be universally left [right]-stable if (X,Y) is always stable for every Y[X]. In this paper, we show that universally right-stable...
The aim of the present paper is to study the class of tvs which we define by ommiting the word increasing in the definition of *-suprabarrelled spaces. We prove that the product of Baire tvs is *-UBL and hence the class of *-UBL spaces is stricty larger than the class of Baire spaces.