Unconditional Convergence in Partially Ordered Linear Spaces.
On montre que si est un espace vectoriel réticulé, le cône des formes linéaires positives sur , muni de la topologie de la convergence simple sur est un cône biréticulé.Ce résultat conduit à une nouvelle définition des cônes biréticulés, équivalents à la définition initiale, mais d’un usage beaucoup plus souple ; ce résultat est la réponse positive à une hypothèse de G. Choquet.
We prove that the associate space of a generalized Orlicz space is given by the conjugate modular even without the assumption that simple functions belong to the space. Second, we show that every weakly doubling -function is equivalent to a doubling -function. As a consequence, we conclude that is uniformly convex if and are weakly doubling.
The uniformly Kadec-Klee property in Köthe-Bochner sequence spaces , where is a Köthe sequence space and is an arbitrary separable Banach space, is studied. Namely, the question of whether or not this geometric property lifts from and to is examined. It is settled affirmatively in contrast to the case when is a Köthe function space. As a corollary we get criteria for to be nearly uniformly convex.
Some class of locally solid topologies (called uniformly -continuous) on Köthe-Bochner spaces that are continuous with respect to some natural two-norm convergence are introduced and studied. A characterization of uniformly -continuous topologies in terms of some family of pseudonorms is given. The finest uniformly -continuous topology on the Orlicz-Bochner space is a generalized mixed topology in the sense of P. Turpin (see [11, Chapter I]).