Displaying 61 – 80 of 98

Showing per page

Une nouvelle définition des cônes biréticulés

Alain Goullet de Rugy (1974)

Annales de l'institut Fourier

On montre que si E est un espace vectoriel réticulé, le cône des formes linéaires positives sur E , muni de la topologie de la convergence simple sur E est un cône biréticulé.Ce résultat conduit à une nouvelle définition des cônes biréticulés, équivalents à la définition initiale, mais d’un usage beaucoup plus souple ; ce résultat est la réponse positive à une hypothèse de G. Choquet.

Uniform convexity and associate spaces

Petteri Harjulehto, Peter Hästö (2018)

Czechoslovak Mathematical Journal

We prove that the associate space of a generalized Orlicz space L φ ( · ) is given by the conjugate modular φ * even without the assumption that simple functions belong to the space. Second, we show that every weakly doubling Φ -function is equivalent to a doubling Φ -function. As a consequence, we conclude that L φ ( · ) is uniformly convex if φ and φ * are weakly doubling.

Uniform Kadec-Klee property and nearly uniform convexity in Köthe-Bochner sequence spaces

Paweł Kolwicz (2003)

Bollettino dell'Unione Matematica Italiana

The uniformly Kadec-Klee property in Köthe-Bochner sequence spaces E X , where E is a Köthe sequence space and X is an arbitrary separable Banach space, is studied. Namely, the question of whether or not this geometric property lifts from X and E to E X is examined. It is settled affirmatively in contrast to the case when E is a Köthe function space. As a corollary we get criteria for E X to be nearly uniformly convex.

Uniformly μ -continuous topologies on Köthe-Bochner spaces and Orlicz-Bochner spaces

Krzysztof Feledziak (1998)

Commentationes Mathematicae Universitatis Carolinae

Some class of locally solid topologies (called uniformly μ -continuous) on Köthe-Bochner spaces that are continuous with respect to some natural two-norm convergence are introduced and studied. A characterization of uniformly μ -continuous topologies in terms of some family of pseudonorms is given. The finest uniformly μ -continuous topology 𝒯 I ϕ ( X ) on the Orlicz-Bochner space L ϕ ( X ) is a generalized mixed topology in the sense of P. Turpin (see [11, Chapter I]).

Currently displaying 61 – 80 of 98