Displaying 101 – 120 of 2679

Showing per page

A normability condition on locally convex spaces.

S. Önal, T. Terzioglu (1991)

Revista Matemática de la Universidad Complutense de Madrid

In a previous work (1990) we introduced a certain property (y) on locally convex spaces and used it to remove the assumption of separability from the theorem of Bellenot and Dubinsky on the existence of nuclear Köthe quotients of Fréchet spaces. Our purpose is to examine condition (y) further and relate it to some other normability conditions. Some of our results were already announced in Önal (1989).

A note on a theorem of Klee

Jerzy Kąkol (1993)

Commentationes Mathematicae Universitatis Carolinae

It is proved that if E , F are separable quasi-Banach spaces, then E × F contains a dense dual-separating subspace if either E or F has this property.

A note on embedding into product spaces

M. A. Sofi (2006)

Czechoslovak Mathematical Journal

Using factorization properties of an operator ideal over a Banach space, it is shown how to embed a locally convex space from the corresponding Grothendieck space ideal into a suitable power of E , thus achieving a unified treatment of several embedding theorems involving certain classes of locally convex spaces.

A note on Fréchet-Urysohn locally convex spaces.

Jerzy Kąkol, Manuel López Pellicer (2007)

RACSAM

Recently Cascales, Kąkol and Saxon showed that in a large class of locally convex spaces (so called class G) every Fréchet-Urysohn space is metrizable. Since there exist (under Martin’s axiom) nonmetrizable separable Fréchet-Urysohn spaces Cp(X) and only metrizable spaces Cp(X) belong to class G, we study another sufficient conditions for Fréchet-Urysohn locally convex spaces to be metrizable.

A note on ( g D F ) -spaces.

del-Vecchio, Renata R., Pombo, Dinamérico P. jun., Vinagre, Cybele T. M. (2000)

International Journal of Mathematics and Mathematical Sciences

A note on intersections of simplices

David A. Edwards, Ondřej F. K. Kalenda, Jiří Spurný (2011)

Bulletin de la Société Mathématique de France

We provide a corrected proof of [1, Théorème 9] stating that any metrizable infinite-dimensional simplex is affinely homeomorphic to the intersection of a decreasing sequence of Bauer simplices.

A note on L-Dunford-Pettis sets in a topological dual Banach space

Abderrahman Retbi (2020)

Czechoslovak Mathematical Journal

The present paper is devoted to some applications of the notion of L-Dunford-Pettis sets to several classes of operators on Banach lattices. More precisely, we establish some characterizations of weak Dunford-Pettis, Dunford-Pettis completely continuous, and weak almost Dunford-Pettis operators. Next, we study the relationships between L-Dunford-Pettis, and Dunford-Pettis (relatively compact) sets in topological dual Banach spaces.

Currently displaying 101 – 120 of 2679