Displaying 101 – 120 of 221

Showing per page

The non-archimedian space BC(X) with the strict topology.

Nicole De Grande-De Kimpe, Samuel Navarro (1994)

Publicacions Matemàtiques

Let X be a zero-dimensional, Hausdorff topological space and K a field with non-trivial, non-archimedean valuation under which it is complete. Then BC(X) is the vector space of the bounded continuous functions from X to K. We obtain necessary and sufficient conditions for BC(X), equipped with the strict topology, to be of countable type and to be nuclear in the non-archimedean sense.

The Oka-Weil theorem in topological vector spaces

Bui Dac Tac (1991)

Annales Polonici Mathematici

It is shown that a sequentially complete topological vector space X with a compact Schauder basis has WSPAP (see Definition 2) if and only if X has a pseudo-homogeneous norm bounded on every compact subset of X.

The order σ -complete vector lattice of AM-compact operators

Belmesnaoui Aqzzouz, Redouane Nouira (2009)

Czechoslovak Mathematical Journal

We establish necessary and sufficient conditions under which the linear span of positive AM-compact operators (in the sense of Fremlin) from a Banach lattice E into a Banach lattice F is an order σ -complete vector lattice.

The Poulsen simplex

Joram Lindenstrauss, Gunnar Olsen, Y. Sternfeld (1978)

Annales de l'institut Fourier

It is proved that there is a unique metrizable simplex S whose extreme points are dense. This simplex is homogeneous in the sense that for every 2 affinely homeomorphic faces F 1 and F 2 there is an automorphism of S which maps F 1 onto F 2 . Every metrizable simplex is affinely homeomorphic to a face of S . The set of extreme points of S is homeomorphic to the Hilbert space 2 . The matrices which represent A ( S ) are characterized.

The projective limit functor for spectra of webbed spaces

L. Frerick, D. Kunkle, J. Wengenroth (2003)

Studia Mathematica

We study Palamodov's derived projective limit functor Proj¹ for projective spectra consisting of webbed locally convex spaces introduced by Wilde. This class contains almost all locally convex spaces appearing in analysis. We provide a natural characterization for the vanishing of Proj¹ which generalizes and unifies results of Palamodov and Retakh for spectra of Fréchet and (LB)-spaces. We thus obtain a general tool for solving surjectivity problems in analysis.

Currently displaying 101 – 120 of 221