The second dual spaces of the sets of -strongly convergent and bounded sequences.
We show that the space of tracial quantum symmetric states of an arbitrary unital C*-algebra is a Choquet simplex and is a face of the tracial state space of the universal unital C*-algebra free product of A with itself infinitely many times. We also show that the extreme points of this simplex are dense, making it the Poulsen simplex when A is separable and nontrivial. In the course of the proof we characterize the centers of certain tracial amalgamated free product C*-algebras.
Certain classes of locally convex space having non complete separated quotients are studied and consequently results about -completeness are obtained. In particular the space of L. Schwartz is not -complete where denotes a non-empty open set of the euclidean space .
Let Ω be an open connected subset of . We show that the space A(Ω) of real-analytic functions on Ω has no (Schauder) basis. One of the crucial steps is to show that all metrizable complemented subspaces of A(Ω) are finite-dimensional.
We give some new properties of the space and we apply them to the σ-core theory. These results generalize those by Choudhary and Yardimci.