Displaying 141 – 160 of 221

Showing per page

The symmetric tensor product of a direct sum of locally convex spaces

José Ansemil, Klaus Floret (1998)

Studia Mathematica

An explicit representation of the n-fold symmetric tensor product (equipped with a natural topology τ such as the projective, injective or inductive one) of the finite direct sum of locally convex spaces is presented. The formula for τ , s n ( F 1 F 2 ) gives a direct proof of a recent result of Díaz and Dineen (and generalizes it to other topologies τ) that the n-fold projective symmetric and the n-fold projective “full” tensor product of a locally convex space E are isomorphic if E is isomorphic to its square E 2 .

The tensor algebra of power series spaces

Dietmar Vogt (2009)

Studia Mathematica

The linear isomorphism type of the tensor algebra T(E) of Fréchet spaces and, in particular, of power series spaces is studied. While for nuclear power series spaces of infinite type it is always s, the situation for finite type power series spaces is more complicated. The linear isomorphism T(s) ≅ s can be used to define a multiplication on s which makes it a Fréchet m-algebra s . This may be used to give an algebra analogue to the structure theory of s, that is, characterize Fréchet m-algebras...

Currently displaying 141 – 160 of 221