Some statistically convergent difference sequence spaces defined over real 2-normed linear spaces.
The main object of this paper is to introduce and study some sequence spaces which arise from the notation of generalized de la Vallée–Poussin means and the concept of a modulus function.
We improve a result of Charpentier [Studia Math. 198 (2010)]. We prove that even on Fréchet spaces with a continuous norm, the existence of only one restrictively universal series implies the existence of a closed infinite-dimensional subspace of restrictively universal series.
Para un b-espacio nuclear N y un b-espacio E demostramos que si X es un espacio compacto entonces los b-espacios C (X,NεE) y NεC (X,E) son isomorfos. El mismo resultado se verifica también si X es un espacio localmente compacto que es numerable en el infinito.
We introduce certain spaces of sequences which can be used to characterize spaces of functions of exponential type. We present a generalized version of the sampling theorem and a "nonorthogonal wavelet decomposition" for the elements of these spaces of sequences. In particular, we obtain a discrete version of the so-called φ-transform studied in [6] [8]. We also show how these new spaces and the corresponding decompositions can be used to study multiplier operators on Besov spaces.