Displaying 181 – 200 of 310

Showing per page

Spaces of Whitney jets on self-similar sets

Dietmar Vogt (2013)

Studia Mathematica

It is shown that complemented subspaces of s, that is, nuclear Fréchet spaces with properties (DN) and (Ω), which are 'almost normwise isomorphic' to a multiple direct sum of copies of themselves are isomorphic to s. This is applied, for instance, to spaces of Whitney jets on the Cantor set or the Sierpiński triangle and gives new results and also sheds new light on known results.

Stability of positive part of unit ball in Orlicz spaces

Ryszard Grzaślewicz, Witold Seredyński (2005)

Commentationes Mathematicae Universitatis Carolinae

The aim of this paper is to investigate the stability of the positive part of the unit ball in Orlicz spaces, endowed with the Luxemburg norm. The convex set Q in a topological vector space is stable if the midpoint map Φ : Q × Q Q , Φ ( x , y ) = ( x + y ) / 2 is open with respect to the inherited topology in Q . The main theorem is established: In the Orlicz space L ϕ ( μ ) the stability of the positive part of the unit ball is equivalent to the stability of the unit ball.

Stability of the Cauchy functional equation in quasi-Banach spaces

Jacek Tabor (2004)

Annales Polonici Mathematici

Let X be a quasi-Banach space. We prove that there exists K > 0 such that for every function w:ℝ → X satisfying ||w(s+t)-w(s)-w(t)|| ≤ ε(|s|+|t|) for s,t ∈ ℝ, there exists a unique additive function a:ℝ → X such that a(1)=0 and ||w(s)-a(s)-sθ(log₂|s|)|| ≤ Kε|s| for s ∈ ℝ, where θ: ℝ → X is defined by θ ( k ) : = w ( 2 k ) / 2 k for k ∈ ℤ and extended in a piecewise linear way over the rest of ℝ.

Standard exact projective resolutions relative to a countable class of Fréchet spaces

P. Domański, J. Krone, D. Vogt (1997)

Studia Mathematica

We will show that for each sequence of quasinormable Fréchet spaces ( E n ) there is a Köthe space λ such that E x t 1 ( λ ( A ) , λ ( A ) = E x t 1 ( λ ( A ) , E n ) = 0 and there are exact sequences of the form . . . λ ( A ) λ ( A ) λ ( A ) λ ( A ) E n 0 . If, for a fixed ℕ, E n is nuclear or a Köthe sequence space, the resolution above may be reduced to a short exact sequence of the form 0 λ ( A ) λ ( A ) E n 0 . The result has some applications in the theory of the functor E x t 1 in various categories of Fréchet spaces by providing a substitute for non-existing projective resolutions.

Currently displaying 181 – 200 of 310