Displaying 81 – 100 of 203

Showing per page

Compactness and countable compactness in weak topologies

W. Kirk (1995)

Studia Mathematica

A bounded closed convex set K in a Banach space X is said to have quasi-normal structure if each bounded closed convex subset H of K for which diam(H) > 0 contains a point u for which ∥u-x∥ < diam(H) for each x ∈ H. It is shown that if the convex sets on the unit sphere in X satisfy this condition (which is much weaker than the assumption that convex sets on the unit sphere are separable), then relative to various weak topologies, the unit ball in X is compact whenever it is countably compact....

Compactness criteria in function spaces

Monika Dörfler, Hans G. Feichtinger, Karlheinz Gröchenig (2002)

Colloquium Mathematicae

The classical criterion for compactness in Banach spaces of functions can be reformulated into a simple tightness condition in the time-frequency domain. This description preserves more explicitly the symmetry between time and frequency than the classical conditions. The result is first stated and proved for L ² ( d ) , and then generalized to coorbit spaces. As special cases, we obtain new characterizations of compactness in Besov-Triebel-Lizorkin, modulation and Bargmann-Fock spaces.

Compactness in approximation spaces

M. Fugarolas (1994)

Colloquium Mathematicae

In this paper we give a characterization of the relatively compact subsets of the so-called approximation spaces. We treat some applications: (1) we obtain some convergence results in such spaces, and (2) we establish a condition for relative compactness of a set lying in a Besov space.

Compactness in L¹ of a vector measure

J. M. Calabuig, S. Lajara, J. Rodríguez, E. A. Sánchez-Pérez (2014)

Studia Mathematica

We study compactness and related topological properties in the space L¹(m) of a Banach space valued measure m when the natural topologies associated to convergence of vector valued integrals are considered. The resulting topological spaces are shown to be angelic and the relationship of compactness and equi-integrability is explored. A natural norming subset of the dual unit ball of L¹(m) appears in our discussion and we study when it is a boundary. The (almost) complete continuity of the integration...

Comparing gaussian and Rademacher cotype for operators on the space of continuous functions

Marius Junge (1996)

Studia Mathematica

We prove an abstract comparison principle which translates gaussian cotype into Rademacher cotype conditions and vice versa. More precisely, let 2 < q < ∞ and T: C(K) → F a continuous linear operator. (1) T is of gaussian cotype q if and only if ( k ( ( T x k F ) / ( l o g ( k + 1 ) ) ) q ) 1 / q c k ɛ k x k L 2 ( C ( K ) ) , for all sequences ( x k ) k C ( K ) with ( T x k ) k = 1 n decreasing. (2) T is of Rademacher cotype q if and only if ( k ( T x k F ( ( l o g ( k + 1 ) ) q ) ) 1 / q c k g k x k L 2 ( C ( K ) ) , for all sequences ( x k ) k C ( K ) with ( T x k ) k = 1 n decreasing. Our method allows a restriction to a fixed number of vectors and complements the corresponding results of Talagrand.

Comparison of Metric Spectral Gaps

Assaf Naor (2014)

Analysis and Geometry in Metric Spaces

Let A = (aij) ∊ Mn(ℝ) be an n by n symmetric stochastic matrix. For p ∊ [1, ∞) and a metric space (X, dX), let γ(A, dpx) be the infimum over those γ ∊ (0,∞] for which every x1, . . . , xn ∊ X satisfy [...] Thus γ (A, dpx) measures the magnitude of the nonlinear spectral gap of the matrix A with respect to the kernel dpX : X × X →[0,∞). We study pairs of metric spaces (X, dX) and (Y, dY ) for which there exists Ψ: (0,∞)→(0,∞) such that γ (A, dpX) ≤Ψ (A, dpY ) for every symmetric stochastic A ∊ Mn(ℝ)...

Complemented copies of c0 in C0(Ω).

Juan Carlos Ferrando, Manuel López Pellicer (2001)

RACSAM

En esta nota consideramos una clase de espacios topológicos de Hausdorff localmente compactos (Ω) con la propiedad de que el espacio de Banach C0(Ω) de todas las funciones continuas con valores escalares definidas en Ω que se anulan en el infinito, equipado con la norma supremo, contiene una copia de C0 norma-uno complementada, mientras que C (βΩ) contiene una copia de l∞ linealmente isométrica.

Complemented copies of c0 in vector-valued Köthe-Dieudonné function spaces.

Santiago Díaz, Antonio Fernandez, Miguel Florencio, Pedro J. Paúl (1992)

Collectanea Mathematica

Let [Lambda] be a barrelled perfect (in the sense of J. Dieudonné) Köthe space of measurable functions defined on an atomless finite Radon measure space. Let X be a Banach space containing a copy of c0, then the space [Lambda(X)] of [Lambda]-Bochner integrable functions contains a complemented copy of c0.

Complemented copies of p spaces in tensor products

Raffaella Cilia, Joaquín M. Gutiérrez (2007)

Czechoslovak Mathematical Journal

We give sufficient conditions on Banach spaces X and Y so that their projective tensor product X π Y , their injective tensor product X ϵ Y , or the dual ( X π Y ) * contain complemented copies of p .

Currently displaying 81 – 100 of 203