On a certain class of always convergent sequences and the Rayleigh quotient iterations
2000 Mathematics Subject Classification: 45A05, 45B05, 45E05,45P05, 46E30We obtain a criterion of Fredholmness and formula for the Fredholm index of a certain class of one-dimensional integral operators M with a weak singularity in the kernel, from the variable exponent Lebesgue space L^p(·) ([a, b], ?) to the Sobolev type space L^α,p(·) ([a, b], ?) of fractional smoothness. We also give formulas of closed form solutions ϕ ∈ L^p(·) of the 1st kind integral equation M0ϕ = f, known as the generalized...
Let and , where a(s) is a positive continuous function such that and b(s) is quasi-increasing and . Then the following statements for the Hardy-Littlewood maximal function Mf(x) are equivalent: (j) there exist positive constants and such that for all ; (jj) there exist positive constants and such that for all .
Let Ω be a nonatomic probability space, let X be a Banach function space over Ω, and let ℳ be the collection of all martingales on Ω. For , let Mf and Sf denote the maximal function and the square function of f, respectively. We give some necessary and sufficient conditions for X to have the property that if f, g ∈ ℳ and , then , where C is a constant independent of f and g.
Let G be a locally compact group with a fixed left Haar measure. Given Young functions φ and ψ, we consider the Orlicz spaces and on a non-unimodular group G, and, among other things, we prove that under mild conditions on φ and ψ, the set is well defined on G is σ-c-lower porous in . This answers a question raised by Głąb and Strobin in 2010 in a more general setting of Orlicz spaces. We also prove a similar result for non-compact locally compact groups.
Criteria for compactly locally uniformly rotund points in Orlicz spaces are given.