Displaying 101 – 120 of 122

Showing per page

Proper uniform algebras are flat

R. C. Smith (2009)

Czechoslovak Mathematical Journal

In this brief note, we see that if A is a proper uniform algebra on a compact Hausdorff space X , then A is flat.

Properties of derivations on some convolution algebras

Thomas Pedersen (2014)

Open Mathematics

For all convolution algebras L 1[0, 1); L loc1 and A(ω) = ∩n L 1(ωn), the derivations are of the form D μ f = Xf * μ for suitable measures μ, where (Xf)(t) = tf(t). We describe the (weakly) compact as well as the (weakly) Montel derivations on these algebras in terms of properties of the measure μ. Moreover, for all these algebras we show that the extension of D μ to a natural dual space is weak-star continuous.

Properties of Orlicz-Pettis or Nikodym type and barrelledness conditions

Philippe Turpin (1978)

Annales de l'institut Fourier

An Orlicz-Pettis type property for vector measures and also the “Uniform Boundedness Principle” are shown to fail without local convexity assumption. The author asks under which generalized convexity hypotheses these properties remain true. This problem is expressed in terms of barrelledness type conditions.

Properties of the Sobolev space H k s , s '

Henryk Kołakowski (1999)

Annales Polonici Mathematici

Let n ≥ 2 and H k s , s ' = u S ' ( n ) : u s , s ' < , where u ² s , s ' = ( 2 π ) - n ( 1 + | ξ | ² ) s ( 1 + | ξ ' | ² ) s ' | F u ( ξ ) | ² d ξ , F u ( ξ ) = e - i x ξ u ( x ) d x , ξ ' k , k < n. We prove that for some s,s’ the space H k s , s ' is a multiplicative algebra.

Propriétés géométriques de h p ( 𝔻 , X ) et généralisations

Mohammad Daher (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Nous montrons que h 2 ( 𝔻 , L 1 ( 𝕋 ) ) admet une norme équivalente L U R , ce qui répond négativement à une question de Dowling, Hu et Smith. Puis nous obtenons une propriété de stabilité des opérateurs de Radon-Nikodym analytique. Motivés par l’identification entre h p ( 𝔻 , X ) et V B p ( 𝕋 , X ) X est un espace de Banach, pour un groupe abélien compact métrisable G , son dual Γ , et Λ 2 Λ 1 Γ , nous prouvons que, si l’espace V B Λ 1 p ( G , X ) / V B Λ 2 p ( G , X ) a la propriété K a d e c - K l e e - β - ω , alors il coincïde avec L Λ 1 p ( G , X ) / L Λ 2 p ( G , X ) , ...

Pseudocomplémentation dans les espaces de Banach

Patric Rauch (1991)

Studia Mathematica

This paper introduces the following definition: a closed subspace Z of a Banach space E is pseudocomplemented in E if for every linear continuous operator u from Z to Z there is a linear continuous extension ū of u from E to E. For instance, every subspace complemented in E is pseudocomplemented in E. First, the pseudocomplemented hilbertian subspaces of L ¹ are characterized and, in L p with p in [1, + ∞[, classes of closed subspaces in which the notions of complementation and pseudocomplementation...

Pseudodifferential operators on non-quasianalytic classes of Beurling type

C. Fernández, A. Galbis, D. Jornet (2005)

Studia Mathematica

We introduce pseudodifferential operators (of infinite order) in the framework of non-quasianalytic classes of Beurling type. We prove that such an operator with (distributional) kernel in a given Beurling class ( ω ) ' is pseudo-local and can be locally decomposed, modulo a smoothing operator, as the composition of a pseudodifferential operator of finite order and an ultradifferential operator with constant coefficients in the sense of Komatsu, both operators with kernel in the same class ( ω ) ' . We also...

Currently displaying 101 – 120 of 122