Über den Absolutbetrag auf komplexen Vektorverbänden.
Given an ultragraph in the sense of Tomforde, we construct a topological quiver in the sense of Muhly and Tomforde in such a way that the universal C*-algebras associated to the two objects coincide. We apply results of Muhly and Tomforde for topological quiver algebras and of Katsura for topological graph C*-algebras to study the K-theory and gauge-invariant ideal structure of ultragraph C*-algebras.
The existence of unbounded *-representations of (locally convex) tensor product *-algebras is investigated, in terms of the existence of unbounded *-representations of the (locally convex) factors of the tensor product and vice versa.
Let G be an infinite locally compact abelian group and X be a Banach space. We show that if every bounded Fourier multiplier T on L²(G) has the property that is bounded on L²(G,X) then X is isomorphic to a Hilbert space. Moreover, we prove that if 1 < p < ∞, p ≠ 2, then there exists a bounded Fourier multiplier on which is not completely bounded. Finally, we examine unconditionality from the point of view of Schur multipliers. More precisely, we give several necessary and sufficient conditions...
L’espace des -pseudofonctions sur un groupe localement compact est le complété de pour la norme de convoluteur de . Dans le cas où le groupe est moyennable alors le banach dual à s’identifie avec une certaine algèbre de fonctions continues sur . L’algèbre est déjà connue mais ici on montre que est un foncteur de groupes localement compacts. Pour alors est l’algèbre de dont le dual est , l’algèbre de transformées de Fourier-Stieltjes. Donc, pour un groupe moyennable, élément...
On appelle pré-sous-groupe d’un unitaire multiplicatif agissant sur un espace hilbertien de dimension finie une droite vectorielle de telle que . Nous montrons que les pré-sous-groupes sont en nombre fini, donnons un équivalent du théorème de Lagrange et généralisons à ce cadre la construction du “bi-produit croisé”. De plus, nous établissons des bijections entre pré-sous-groupes et sous-algèbres coïdéales de l’algèbre de Hopf associée à , et donc, d’après Izumi, Longo, Popa, avec les...
In this paper, we consider the classification of unital extensions of -algebras by their six-term exact sequences in -theory. Using the classification theory of -algebras and the universal coefficient theorem for unital extensions, we give a complete characterization of isomorphisms between unital extensions of -algebras by stable Cuntz algebras. Moreover, we also prove a classification theorem for certain unital extensions of -algebras by stable purely infinite simple -algebras with nontrivial...
Let ℳ be a semi-finite factor and let 𝓙(ℳ ) be the set of operators T in ℳ such that T = ETE for some finite projection E. We obtain a representation theorem for unitarily invariant norms on 𝓙(ℳ ) in terms of Ky Fan norms. As an application, we prove that the class of unitarily invariant norms on 𝓙(ℳ ) coincides with the class of symmetric gauge norms on a classical abelian algebra, which generalizes von Neumann's classical 1940 result on unitarily invariant norms on Mₙ(ℂ). As another application,...