Generalized Weyl-von Neumann Theorems (II).
Let A be a unital C*-algebra. Denote by P the space of selfadjoint projections of A. We study the relationship between P and the spaces of projections determined by the different involutions induced by positive invertible elements a ∈ A. The maps sending p to the unique with the same range as p and sending q to the unitary part of the polar decomposition of the symmetry 2q-1 are shown to be diffeomorphisms. We characterize the pairs of idempotents q,r ∈ A with ||q-r|| < 1 such that...
We consider circulant graphs having vertices, with prime. To any such graph we associate a certain number , that we call type of the graph. We prove that for the graph has no quantum symmetry, in the sense that the quantum automorphism group reduces to the classical automorphism group.
We tackle R. V. Kadison’s similarity problem (i.e. any bounded representation of any unital C*-algebra is similar to a *-representation), paying attention to the class of C*-unitarisable groups (those groups G for which the full group C*-algebra C*(G) satisfies Kadison’s problem) and thereby we establish some stability results for Kadison’s problem. Namely, we prove that inherits the similarity problem from those of the C*-algebras A and B, provided B is also nuclear. Then we prove that G/Γ is...
Nous proposons une caractérisation géométrique des variétés de dimension ayant des groupes fondamentaux dont toutes les classes de conjugaison autres que sont infinies, c’est-à-dire dont les algèbres de von Neumann sont des facteurs de type : ce sont essentiellement les -variétés à groupes fondamentaux infinis qui n’admettent pas de fibration de Seifert. Autrement dit et plus précisément, soient une -variété connexe compacte et son groupe fondamental, qu’on suppose être infini et avec...