Generalizations of Kaplansky's Theorem Involving Unbounded Linear Operators
We are mainly concerned with the result of Kaplansky on the composition of two normal operators in the case in which at least one of the operators is unbounded.
We are mainly concerned with the result of Kaplansky on the composition of two normal operators in the case in which at least one of the operators is unbounded.
Commutativity and continuity conditions for the Moore-Penrose inverse and the "conorm" are established in a C*-algebra; moreover, spectral permanence and B*-properties for the conorm are proved.
According to the von Neumann-Halperin and Lapidus theorems, in a Hilbert space the iterates of products or, respectively, of convex combinations of orthoprojections are strongly convergent. We extend these results to the iterates of convex combinations of products of some projections in a complex Banach space. The latter is assumed uniformly convex or uniformly smooth for the orthoprojections, or reflexive for more special projections, in particular, for the hermitian ones. In all cases the proof...
Let be a unital Banach algebra over , and suppose that the nonzero spectral values of and are discrete sets which cluster at , if anywhere. We develop a plane geometric formula for the spectral semidistance of and which depends on the two spectra, and the orthogonality relationships between the corresponding sets of Riesz projections associated with the nonzero spectral values. Extending a result of Brits and Raubenheimer, we further show that and are quasinilpotent equivalent if...
We study the subset in a unital C*-algebra composed of elements a such that is invertible, where denotes the Moore-Penrose inverse of a. A distinguished subset of this set is also investigated. Furthermore we study sequences of elements belonging to the aforementioned subsets.
We show that an iterated double series condition due to Antosik implies the uniform convergence of the double series. An application of Antosik's condition is given to the derivation of a vector form of the Hellinger-Toeplitz theorem.