New extended Weyl type theorems
Four applications are outlined of pseudospectra of highly nonnormal linear operators.
We show that a positive semigroup on with generator A and ||R(α + i β)|| → 0 as |β| → ∞ for some α ∈ ℝ is continuous in the operator norm for t>0. The proof is based on a criterion for norm continuity in terms of “smoothing properties” of certain convolution operators on general Banach spaces and an extrapolation result for the -scale, which may be of independent interest.
The paper concerns operators of deformed structure like q-normal and q-hyponormal operators with the deformation parameter q being a positive number different from 1. In particular, an example of a q-hyponormal operator with empty spectrum is given, and q-hyponormality is characterized in terms of some operator inequalities.