Fredholm Theory Relative to a Banach Algebra Homomorphism.
We establish the Fredholmness of a pseudo-differential operator whose symbol is of class , , in the spatial variable. Our work here refines the work of H. Abels, C. Pfeuffer (2020).
Let T be a bounded linear operator acting on a Banach space X such that T or T* has the single-valued extension property (SVEP). We prove that the spectral mapping theorem holds for the semi-essential approximate point spectrum σSBF-+(T); and we show that generalized a-Browder's theorem holds for f(T) for every analytic function f defined on an open neighbourhood U of σ(T): Moreover, we give a necessary and sufficient condition for such T to obey generalized a-Weyl's theorem. An application is given...
The convexity and compactness in the weak operator topology of the image and pre-image of a generalized fractional linear transformation is established. As an application the exponential dichotomy of solutions to evolution problems of the parabolic type is proved.
A bounded operator T ∈ L(X) acting on a Banach space X is said to satisfy generalized Weyl's theorem if the complement in the spectrum of the B-Weyl spectrum is the set of all eigenvalues which are isolated points of the spectrum. We prove that generalized Weyl's theorem holds for several classes of operators, extending previous results of Istrăţescu and Curto-Han. We also consider the preservation of generalized Weyl's theorem between two operators T ∈ L(X), S ∈ L(Y) intertwined or asymptotically...
Several authors have defined operational quantities derived from the norm of an operator between Banach spaces. This situation is generalized in this paper and we present a general framework in which we derivate several maps from an initial one , where is a set endowed with two orders, and , related by certain conditions. We obtain only three different derivated maps, if the initial map is bounded and monotone.
A sequence (Tₙ) of bounded linear operators between Banach spaces X,Y is said to be hypercyclic if there exists a vector x ∈ X such that the orbit Tₙx is dense in Y. The paper gives a survey of various conditions that imply the hypercyclicity of (Tₙ) and studies relations among them. The particular case of X = Y and mutually commuting operators Tₙ is analyzed. This includes the most interesting cases (Tⁿ) and (λₙTⁿ) where T is a fixed operator and λₙ are complex numbers. We also study when a sequence...
We obtain several characterizations for the classes of Riesz and inessential operators, and apply them to extend the family of Banach spaces for which the essential incomparability class is known, solving partially a problem posed in [6].