Störungskriterien im reflexiven Banachraum.
Upper semi-Fredholm operators and tauberian operators in Banach spaces admit the following perturbative characterizations [6], [2]: An operator T: X --> Y is upper semi-Fredholm (tauberian) if and only if for every compact operator K: X --> Y the kernel N(T+K) is finite dimensional (reflexive). In [7] Tacon introduces an intermediate class between upper semi-Fredholm operators and tauberian operators, the supertauberian operators, and he studies this class using non-standard analysis....
Pour un opérateur T borné sur un espace de Hilbert dans lui-même, nous montrons que , où γ est la conorme (the reduced minimum modulus) et π(T) est la classe de T dans l’algèbre de Calkin. Nous montrons aussi que ce supremum est atteint. D’autre part, nous montrons que les opérateurs semi-Fredholm caractérisent les points de continuité de l’application T → γ (π(T)).