Analytic Functions of Topological Proper Contractions.
Given a Banach algebra ℱ of complex-valued functions and a closed, linear (possibly unbounded) densely defined operator A, on a Banach space, with an ℱ functional calculus we present two ways of extending this functional calculus to a much larger class of functions with little or no growth conditions. We apply this to spectral operators of scalar type, generators of bounded strongly continuous groups and operators whose resolvent set contains a half-line. For f in this larger class, one construction...
In the present paper, we study a-Weyl's and a-Browder's theorem for an operator T such that T or T* satisfies the single valued extension property (SVEP). We establish that if T* has the SVEP, then T obeys a-Weyl's theorem if and only if it obeys Weyl's theorem. Further, if T or T* has the SVEP, we show that the spectral mapping theorem holds for the essential approximative point spectrum, and that a-Browder's theorem is satisfied by f(T) whenever f ∈ H(σ(T)). We also provide several conditions...
Using axiomatic joint spectra we obtain a functional calculus which extends our previous Gelfand-Waelbroeck type results to include a Banach-valued Taylor-Waelbroeck spectrum.
In this paper we consider Bessel equations of the type , where A is an nn complex matrix and X(t) is an nm matrix for t > 0. Following the ideas of the scalar case we introduce the concept of a fundamental set of solutions for the above equation expressed in terms of the data dimension. This concept allows us to give an explicit closed form solution of initial and two-point boundary value problems related to the Bessel equation.
Soient des éléments d’une -algèbre commutative unifère . On définit et étudie un “spectre” de qui dépend de la croissance des fonctions de l’égalité spectraleprès du spectre simultané. À partir des propriétés de ce spectre, on construit un calcul fonctionnel qui, réduit au cas banachique, s’étend à certaines fonctions supposées seulement holomorphes à l’intérieur du spectre simultané. Ce calcul fonctionnel permet aussi d’étudier la régularité des éléments et des fonctions .
We study a class of closed linear operators on a Banach space whose nonzero spectrum lies in the open left half plane, and for which is at most a simple pole of the operator resolvent. Our spectral theory based methods enable us to give a simple proof of the characterization of -semigroups of bounded linear operators with asynchronous exponential growth, and recover results of Thieme, Webb and van Neerven. The results are applied to the study of the asymptotic behavior of the solutions to a singularly...
The relationship between the joint spectrum γ(A) of an n-tuple of selfadjoint operators and the support of the corresponding Weyl calculus T(A) : f ↦ f(A) is discussed. It is shown that one always has γ(A) ⊂ supp (T(A)). Moreover, when the operators are compact, equality occurs if and only if the operators mutually commute. In the non-commuting case the equality fails badly: While γ(A) is countable, supp(T(A)) has to be an uncountable set. An example is given showing that, for non-compact operators,...