Stability Theorems for Singular Perturbation of Eigenvalues.
We prove uniform local energy estimates of solutions to the damped Schrödinger equation in exterior domains under the hypothesis of the Exterior Geometric Control. These estimates are derived from the resolvent properties.
We intend to conduct a fairly complete study on Timoshenko beams with pointwise feedback controls and seek to obtain information about the eigenvalues, eigenfunctions, Riesz-Basis-Property, spectrum-determined-growth-condition, energy decay rate and various stabilities for the beams. One major difficulty of the present problem is the non-simplicity of the eigenvalues. In fact, we shall indicate in this paper situations where the multiplicity of the eigenvalues is at least two. We build all the above-mentioned...
We intend to conduct a fairly complete study on Timoshenko beams with pointwise feedback controls and seek to obtain information about the eigenvalues, eigenfunctions, Riesz-Basis-Property, spectrum-determined-growth-condition, energy decay rate and various stabilities for the beams. One major difficulty of the present problem is the non-simplicity of the eigenvalues. In fact, we shall indicate in this paper situations where the multiplicity of the eigenvalues is at least two. We build all the...
If T is a bounded operator on a separable complex Hilbert space ℋ, an invariant subspace ℳ for T is stable provided that whenever is a sequence of operators such that , there is a sequence of subspaces , with in for all n, such that in the strong operator topology. If the projections converge in norm, ℳ is called a norm stable invariant subspace. This paper characterizes the stable invariant subspaces of the unilateral shift of finite multiplicity and normal operators. It also shows that...
We identify how the standard commuting dilation of the maximal commuting piece of any row contraction, especially on a finite-dimensional Hilbert space, is associated to the minimal isometric dilation of the row contraction. Using the concept of standard commuting dilation it is also shown that if liftings of row contractions are on finite-dimensional Hilbert spaces, then there are strong restrictions on properties of the liftings.
We study dilations of q-commuting tuples. Bhat, Bhattacharyya and Dey gave the correspondence between the two standard dilations of commuting tuples and here these results are extended to q-commuting tuples. We are able to do this when the q-coefficients are of modulus one. We introduce a “maximal q-commuting subspace” of an n-tuple of operators and a “standard q-commuting dilation”. Our main result is that the maximal q-commuting subspace of the standard noncommuting dilation of a q-commuting...
For an operator in a possibly infinite-dimensional Hilbert space of a certain class, we set down axioms of an abstract intersection theory, from which the Riemann hypothesis regarding the spectrum of that operator follows. In our previous paper (2011) we constructed a GNS (Gelfand-Naimark-Segal) model of abstract intersection theory. In this paper we propose another model, which we call a standard model of abstract intersection theory. We show that there is a standard model of abstract intersection...
The Stieltjes moment problem is studied in the framework of general Gelfand-Shilov spaces, subspaces of the space of rapidly decreasing smooth complex functions, which are defined by imposing suitable bounds on their elements in terms of a given sequence M. Necessary and sufficient conditions on M are stated for the problem to have a solution, sometimes coming with linear continuous right inverses of the moment map, sending a function to the sequence of its moments. On the way, some results on the...
The classical Banach principle is an essential tool for the investigation of ergodic properties of Cesàro subsequences. The aim of this work is to extend the Banach principle to the case of stochastic convergence in operator algebras. We start by establishing a sufficient condition for stochastic convergence (stochastic Banach principle). Then we prove stochastic convergence for bounded Besicovitch sequences, and as a consequence for uniform subsequences.