Störungstheoretische Untersuchungen über Semi-Fredholmpaare und -operatoren in lokalkonvexen Vektorräumen. I.
Let be a completely regular Hausdorff space, a real Banach space, and let be the space of all -valued bounded continuous functions on . We study linear operators from endowed with the strict topologies
Let be a sequence of positive numbers and . We consider the space of all power series such that . We investigate strict cyclicity of , the weakly closed algebra generated by the operator of multiplication by acting on , and determine the maximal ideal space, the dual space and the reflexivity of the algebra . We also give a necessary condition for a composition operator to be bounded on when is strictly cyclic.
Properties of strictly singular operators have recently become of topical interest because the work of Gowers and Maurey in [GM1] and [GM2] gives (among many other brilliant and surprising results, such as those in [G1] and [G2]) Banach spaces on which every continuous operator is of form λ I + S, where S is strictly singular. So if strictly singular operators had invariant subspaces, such spaces would have the property that all operators on them had invariant subspaces. However, in this paper we...
We show that the set of those Markov semigroups on the Schatten class ₁ such that in the strong operator topology , where Q is a one-dimensional projection, form a meager subset of all Markov semigroups.
Let be a positive contraction, with . Assume that is analytic, that is, there exists a constant such that for any integer . Let and let be the space of all complex sequences with a finite strong -variation. We show that for any , the sequence belongs to for almost every , with an estimate . If we remove the analyticity assumption, we obtain an estimate , where denotes the ergodic average of . We also obtain similar results for strongly continuous semigroups of positive...
We extend some recent results for regularized semigroups to strongly continuous n-times integrated C-cosine operator functions. Several equivalent conditions for the existence and uniqueness of solutions of (ACP) are also presented.
In dimension one it is proved that the solution to a total variation-regularized least-squares problem is always a function which is "constant almost everywhere" , provided that the data are in a certain sense outside the range of the operator to be inverted. A similar, but weaker result is derived in dimension two.
Let T be a stochastic operator on a σ-finite standard measure space with an equivalent σ-finite infinite subinvariant measure λ. Then T possesses a natural "conservative deterministic factor" Φ which is the Frobenius-Perron operator of an invertible measure preserving transformation φ. Moreover, T is mixing ("sweeping") iff φ is a mixing transformation. Some stronger versions of mixing are also discussed. In particular, a notion of *L¹-s.o.t. mixing is introduced and characterized in terms of weak...