Displaying 41 – 60 of 82

Showing per page

Four characterizations of scalar-type operators with spectrum in a half-line

Peter Vieten (1997)

Studia Mathematica

C 0 -scalar-type spectrality criterions for operators A whose resolvent set contains the negative reals are provided. The criterions are given in terms of growth conditions on the resolvent of A and the semigroup generated by A. These criterions characterize scalar-type operators on the Banach space X if and only if X has no subspace isomorphic to the space of complex null-sequences.

Fourier-like methods for equations with separable variables

Danuta Przeworska-Rolewicz (2009)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

It is well known that a power of a right invertible operator is again right invertible, as well as a polynomial in a right invertible operator under appropriate assumptions. However, a linear combination of right invertible operators (in particular, their sum and/or difference) in general is not right invertible. It will be shown how to solve equations with linear combinations of right invertible operators in commutative algebras using properties of logarithmic and antilogarithmic mappings. The...

Fractional Laplacian with singular drift

Tomasz Jakubowski (2011)

Studia Mathematica

For α ∈ (1,2) we consider the equation t u = Δ α / 2 u + b · u , where b is a time-independent, divergence-free singular vector field of the Morrey class M 1 - α . We show that if the Morrey norm | | b | | M 1 - α is sufficiently small, then the fundamental solution is globally in time comparable with the density of the isotropic stable process.

Fractional Powers of Almost Non-Negative Operators

Martínez, Celso, Sanz, Miguel, Redondo, Antonia (2005)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: Primary 47A60, 47D06.In this paper, we extend the theory of complex powers of operators to a class of operators in Banach spaces whose spectrum lies in C ]−∞, 0[ and whose resolvent satisfies an estimate ||(λ + A)(−1)|| ≤ (λ(−1) + λm) M for all λ > 0 and for some constants M > 0 and m ∈ R. This class of operators strictly contains the class of the non negative operators and the one of operators with polynomially bounded resolvent. We also prove that this theory...

Fredholm determinants

Henry McKean (2011)

Open Mathematics

The article provides with a down to earth exposition of the Fredholm theory with applications to Brownian motion and KdV equation.

Fredholm spectrum and growth of cohomology groups

Jörg Eschmeier (2008)

Studia Mathematica

Let T ∈ L(E)ⁿ be a commuting tuple of bounded linear operators on a complex Banach space E and let σ F ( T ) = σ ( T ) σ e ( T ) be the non-essential spectrum of T. We show that, for each connected component M of the manifold R e g ( σ F ( T ) ) of all smooth points of σ F ( T ) , there is a number p ∈ 0, ..., n such that, for each point z ∈ M, the dimensions of the cohomology groups H p ( ( z - T ) k , E ) grow at least like the sequence ( k d ) k 1 with d = dim M.

Currently displaying 41 – 60 of 82