Displaying 81 – 100 of 118

Showing per page

Explicit representation of compact linear operators in Banach spaces via polar sets

David E. Edmunds, Jan Lang (2013)

Studia Mathematica

We consider a compact linear map T acting between Banach spaces both of which are uniformly convex and uniformly smooth; it is supposed that T has trivial kernel and range dense in the target space. It is shown that if the Gelfand numbers of T decay sufficiently quickly, then the action of T is given by a series with calculable coefficients. This provides a Banach space version of the well-known Hilbert space result of E. Schmidt.

Explicit solutions for boundary value problems related to the operator equations X ( 2 ) - A X = 0

Lucas Jódar, Enrique A. Navarro (1991)

Applications of Mathematics

Cauchy problem, boundary value problems with a boundary value condition and Sturm-Liouville problems related to the operator differential equation X ( 2 ) - A X = 0 are studied for the general case, even when the algebraic equation X 2 - A = 0 is unsolvable. Explicit expressions for the solutions in terms of data problem are given and computable expressions of the solutions for the finite-dimensional case are made available.

Exponential bounds for noncommuting systems of matrices

Brian Jefferies (2001)

Studia Mathematica

It is shown that a finite system T of matrices whose real linear combinations have real spectrum satisfies a bound of the form | | e i T , ζ | | C ( 1 + | ζ | ) s e r | ζ | . The proof appeals to the monogenic functional calculus.

Exponentials of bounded normal operators

Aicha Chaban, Mohammed Hichem Mortad (2013)

Colloquium Mathematicae

The present paper is mainly concerned with equations involving exponentials of bounded normal operators. Conditions implying commutativity of normal operators are given, without using the known 2πi-congruence-free hypothesis. This is a continuation of a recent work by the second author.

Exponentials of normal operators and commutativity of operators: a new approach

Mohammed Hichem Mortad (2011)

Colloquium Mathematicae

We present a new approach to the question of when the commutativity of operator exponentials implies that of the operators. This is proved in the setting of bounded normal operators on a complex Hilbert space. The proofs are based on some results on similarities by Berberian and Embry as well as the celebrated Fuglede theorem.

Extended Weyl type theorems

M. Berkani, H. Zariouh (2009)

Mathematica Bohemica

An operator T acting on a Banach space X possesses property ( gw ) if σ a ( T ) σ SBF + - ( T ) = E ( T ) , where σ a ( T ) is the approximate point spectrum of T , σ SBF + - ( T ) is the essential semi-B-Fredholm spectrum of T and E ( T ) is the set of all isolated eigenvalues of T . In this paper we introduce and study two new properties ( b ) and ( gb ) in connection with Weyl type theorems, which are analogous respectively to Browder’s theorem and generalized Browder’s theorem. Among other, we prove that if T is a bounded linear operator acting on a Banach space X , then...

Currently displaying 81 – 100 of 118