Displaying 1101 – 1120 of 3198

Showing per page

Linear Fractional PDE, Uniqueness of Global Solutions

Schäfer, Ingo, Kempfle, Siegmar, Nolte, Bodo (2005)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33, 47A60, 30C15.In this paper we treat the question of existence and uniqueness of solutions of linear fractional partial differential equations. Along examples we show that, due to the global definition of fractional derivatives, uniqueness is only sure in case of global initial conditions.

Linear inessential operators and generalized inverses

Bruce A. Barnes (2009)

Commentationes Mathematicae Universitatis Carolinae

The space of inessential bounded linear operators from one Banach space X into another Y is introduced. This space, I ( X , Y ) , is a subspace of B ( X , Y ) which generalizes Kleinecke’s ideal of inessential operators. For certain subspaces W of I ( X , Y ) , it is shown that when T B ( X , Y ) has a generalized inverse modulo W , then there exists a projection P B ( X ) such that T ( I - P ) has a generalized inverse and T P W .

Linear maps on Mₙ(ℂ) preserving the local spectral radius

Abdellatif Bourhim, Vivien G. Miller (2008)

Studia Mathematica

Let x₀ be a nonzero vector in ℂⁿ. We show that a linear map Φ: Mₙ(ℂ) → Mₙ(ℂ) preserves the local spectral radius at x₀ if and only if there is α ∈ ℂ of modulus one and an invertible matrix A ∈ Mₙ(ℂ) such that Ax₀ = x₀ and Φ ( T ) = α A T A - 1 for all T ∈ Mₙ(ℂ).

Linear maps preserving the generalized spectrum.

Mostafa Mbekhta (2007)

Extracta Mathematicae

Let H be an infinite-dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on H. For an operator T in B(H), let σg(T) denote the generalized spectrum of T. In this paper, we prove that if φ: B(H) → B(H) is a surjective linear map, then φ preserves the generalized spectrum (i.e. σg(φ(T)) = σg(T) for every T ∈ B(H)) if and only if there is A ∈ B(H) invertible such that either φ(T)...

Lipschitz approximable Banach spaces

Gilles Godefroy (2020)

Commentationes Mathematicae Universitatis Carolinae

We show the existence of Lipschitz approximable separable spaces which fail Grothendieck's approximation property. This follows from the observation that any separable space with the metric compact approximation property is Lipschitz approximable. Some related results are spelled out.

Local entropy moduli and eigenvalues of operators in Banach spaces.

Bernd Carl, Thomas Kühn (1985)

Revista Matemática Iberoamericana

In the paper local entropy moduli of operators between Banach spaces are introduced. They constitue a generalization of entropy numbers and moduli, and localize these notions in an appropriate way. Many results regarding entropy numbers and moduli can be carried over to local entropy moduli. We investigate relations between local entropy moduli and s-numbers, spectral properties, eigenvalues, absolutely summing operators. As applications, local entropy moduli of identical and diagonal operators...

Currently displaying 1101 – 1120 of 3198