Displaying 101 – 120 of 335

Showing per page

Some inequalities involving upper bounds for some matrix operators. I

R. Lashkaripour, D. Foroutannia (2007)

Czechoslovak Mathematical Journal

In this paper we consider the problem of finding upper bounds of certain matrix operators such as Hausdorff, Nörlund matrix, weighted mean and summability on sequence spaces l p ( w ) and Lorentz sequence spaces d ( w , p ) , which was recently considered in [9] and [10] and similarly to [14] by Josip Pecaric, Ivan Peric and Rajko Roki. Also, this study is an extension of some works by G. Bennett on l p spaces, see [1] and [2].

Some invariant subspaces for A-contractions and applications

Laurian Suciu (2006)

Extracta Mathematicae

Some invariant subspaces for the operators A and T acting on a Hilbert space H and satisfying T*AT ≤ A and A ≥ 0, are presented. Especially, the largest invariant subspace for A and T on which the equality T* AT = A occurs, is studied in connections to others invariant or reducing subspaces for A, or T. Such subspaces are related to the asymptotic form of the subspace quoted above, this form being obtained using the operator limit of the sequence {T*nATn; n ≥ 1}. More complete results are given...

Some locally mean ergodic theorems

Ping Kwan Tam, Kok-Keong Tan (2002)

Studia Mathematica

The notion of local mean ergodicity is introduced. Some general locally mean ergodic theorems for linear and affine operators are presented. Locally mean ergodic theorems for affine operators whose linear parts are compact or similar to subnormal operators on a Hilbert space are given.

Some new classes of topological vector spaces with closed graph theorems

Brian Rodrigues (1991)

Commentationes Mathematicae Universitatis Carolinae

In this note, we investigate non-locally-convex topological vector spaces for which the closed graph theorem holds. In doing so, we introduce new classes of topological vector spaces. Our study includes a direct extension of Pták duality to the non-locally-convex situation.

Some new problems in spectral optimization

Giuseppe Buttazzo, Bozhidar Velichkov (2014)

Banach Center Publications

We present some new problems in spectral optimization. The first one consists in determining the best domain for the Dirichlet energy (or for the first eigenvalue) of the metric Laplacian, and we consider in particular Riemannian or Finsler manifolds, Carnot-Carathéodory spaces, Gaussian spaces. The second one deals with the optimal shape of a graph when the minimization cost is of spectral type. The third one is the optimization problem for a Schrödinger potential in suitable classes.

Some properties of N-supercyclic operators

P. S. Bourdon, N. S. Feldman, J. H. Shapiro (2004)

Studia Mathematica

Let T be a continuous linear operator on a Hausdorff topological vector space 𝓧 over the field ℂ. We show that if T is N-supercyclic, i.e., if 𝓧 has an N-dimensional subspace whose orbit under T is dense in 𝓧, then T* has at most N eigenvalues (counting geometric multiplicity). We then show that N-supercyclicity cannot occur nontrivially in the finite-dimensional setting: the orbit of an N-dimensional subspace cannot be dense in an (N+1)-dimensional space. Finally, we show that a subnormal operator...

Currently displaying 101 – 120 of 335