Some remarks on eigenfunction expansions for Schrödinger operators with non-local potentials.
We discuss the problem of characterizing the possible asymptotic behaviour of the norm of the iterates of a bounded linear operator between two Banach spaces. In particular, given an increasing sequence of positive numbers tending to infinity, we construct Banach spaces such that the norm of the iterates of a suitable multiplication operator between these spaces assumes (or exceeds) the values of this sequence.
We prove that certain maximal ideals in Beurling algebras on the unit disc have approximate identities, and show the existence of functions with certain properties in these maximal ideals. We then use these results to prove that if T is a bounded operator on a Banach space X satisfying as n → ∞ for some β ≥ 0, then diverges for every x ∈ X such that .
In 1971, Allan Sinclair proved that for a hermitian element h of a Banach algebra and λ complex we have ∥λ + h∥ = r(λ + h), where r denotes the spectral radius. Using Levin's subordination theory for entire functions of exponential type, we extend this result locally to a much larger class of generalized spectral operators. This fundamental result improves many earlier results due to Gelfand, Hille, Colojoară-Foiaş, Vidav, Dowson, Dowson-Gillespie-Spain, Crabb-Spain, I. & V. Istrăţescu, Barnes,...
Nell’articolo si dimostrano alcuni teoremi sulla stabilità dei processi numerici di Ritz e della collocazione in rapporto agli errori di «distorsione».