On nilpotent operators
We give several necessary and sufficient conditions in order that a bounded linear operator on a Banach space be nilpotent. We also discuss three necessary conditions for nilpotency. Furthermore, we construct an infinite family (in one-to-one correspondence with the square-summable sequences of strictly positive real numbers) of nonnilpotent quasinilpotent operators on an infinite-dimensional Hilbert space, all the iterates of each of which have closed range. Each of these operators (as well as...