Displaying 141 – 160 of 335

Showing per page

Somewhere dense Cesàro orbits and rotations of Cesàro hypercyclic operators

George Costakis, Demetris Hadjiloucas (2006)

Studia Mathematica

Let T be a continuous linear operator acting on a Banach space X. We examine whether certain fundamental results for hypercyclic operators are still valid in the Cesàro hypercyclicity setting. In particular, in connection with the somewhere dense orbit theorem of Bourdon and Feldman, we show that if for some vector x ∈ X the set Tx,T²/2 x,T³/3 x, ... is somewhere dense then for every 0 < ε < 1 the set (0,ε)Tx,T²/2 x,T³/3 x,... is dense in X. Inspired by a result of Feldman, we also prove...

Sous-espaces fermés de séries universelles sur un espace de Fréchet

Quentin Menet (2011)

Studia Mathematica

We improve a result of Charpentier [Studia Math. 198 (2010)]. We prove that even on Fréchet spaces with a continuous norm, the existence of only one restrictively universal series implies the existence of a closed infinite-dimensional subspace of restrictively universal series.

Sous-normalité jointe non bornée et applications

Olivier Demanze (2005)

Studia Mathematica

T. Trent gave a new characterization of subnormality for an operator on a Hilbert space. T. Bînzar and D. Păunescu generalized this condition to commuting triples of operators. Here, we give an n-variable unbounded version of the above results. Theorems of this kind have also been obtained by Z. J. Jabłoński and J. Stochel.

Spectra of partial integral operators with a kernel of three variables

Yusup Eshkabilov (2008)

Open Mathematics

Let Ω= [a, b] × [c, d] and T 1, T 2 be partial integral operators in C (Ω): (T 1 f)(x, y) = a b k 1(x, s, y)f(s, y)ds, (T 2 f)(x, y) = c d k 2(x, ts, y)f(t, y)dt where k 1 and k 2 are continuous functions on [a, b] × Ω and Ω × [c, d], respectively. In this paper, concepts of determinants and minors of operators E−τT 1, τ ∈ ℂ and E−τT 2, τ ∈ ℂ are introduced as continuous functions on [a, b] and [c, d], respectively. Here E is the identical operator in C(Ω). In addition, Theorems on the spectra of bounded...

Spectra of the difference, sum and product of idempotents

Mohamed Barraa, Mohamed Boumazgour (2001)

Studia Mathematica

We give a simple proof of the relation between the spectra of the difference and product of any two idempotents in a Banach algebra. We also give the relation between the spectra of their sum and product.

Spectra originating from semi-B-Fredholm theory and commuting perturbations

Qingping Zeng, Qiaofen Jiang, Huaijie Zhong (2013)

Studia Mathematica

Burgos, Kaidi, Mbekhta and Oudghiri [J. Operator Theory 56 (2006)] provided an affirmative answer to a question of Kaashoek and Lay and proved that an operator F is of power finite rank if and only if σ d s c ( T + F ) = σ d s c ( T ) for every operator T commuting with F. Later, several authors extended this result to the essential descent spectrum, left Drazin spectrum and left essential Drazin spectrum. In this paper, using the theory of operators with eventual topological uniform descent and the technique used by Burgos et...

Spectral analysis in a thin domain with periodically oscillating characteristics

Rita Ferreira, Luísa M. Mascarenhas, Andrey Piatnitski (2012)

ESAIM: Control, Optimisation and Calculus of Variations

The paper deals with a Dirichlet spectral problem for an elliptic operator with ε-periodic coefficients in a 3D bounded domain of small thickness δ. We study the asymptotic behavior of the spectrum as ε and δ tend to zero. This asymptotic behavior depends crucially on whether ε and δ are of the same order (δ ≈ ε), or ε is much less than δ(δ = ετ, τ &lt; 1), or ε is much greater than δ(δ = ετ, τ &gt; 1). We consider all three cases.

Spectral analysis in a thin domain with periodically oscillating characteristics

Rita Ferreira, Luísa M. Mascarenhas, Andrey Piatnitski (2012)

ESAIM: Control, Optimisation and Calculus of Variations

The paper deals with a Dirichlet spectral problem for an elliptic operator with ε-periodic coefficients in a 3D bounded domain of small thickness δ. We study the asymptotic behavior of the spectrum as ε and δ tend to zero. This asymptotic behavior depends crucially on whether ε and δ are of the same order (δ ≈ ε), or ε is much less than δ(δ = ετ, τ < 1), or ε is much greater than δ(δ = ετ, τ > 1). ...

Currently displaying 141 – 160 of 335