Displaying 161 – 180 of 335

Showing per page

Spectral analysis of unbounded Jacobi operators with oscillating entries

Jan Janas, Marcin Moszyński (2012)

Studia Mathematica

We describe the spectra of Jacobi operators J with some irregular entries. We divide ℝ into three “spectral regions” for J and using the subordinacy method and asymptotic methods based on some particular discrete versions of Levinson’s theorem we prove the absolute continuity in the first region and the pure pointness in the second. In the third region no information is given by the above methods, and we call it the “uncertainty region”. As an illustration, we introduce and analyse the OP family...

Spectral and homological properties of Hilbert modules over the disc algebra

Raphaël Clouâtre (2014)

Studia Mathematica

We study general Hilbert modules over the disc algebra and exhibit necessary spectral conditions for the vanishing of certain associated extension groups. In particular, this sheds some light on the problem of identifying the projective Hilbert modules. Part of our work also addresses the classical derivation problem.

Spectral approximation for Segal-Bargmann space Toeplitz operators

Albrecht Böttcher, Hartmut Wolf (1997)

Banach Center Publications

Let A stand for a Toeplitz operator with a continuous symbol on the Bergman space of the polydisk N or on the Segal-Bargmann space over N . Even in the case N = 1, the spectrum Λ(A) of A is available only in a few very special situations. One approach to gaining information about this spectrum is based on replacing A by a large “finite section”, that is, by the compression A n of A to the linear span of the monomials z 1 k 1 . . . z N k N : 0 k j n . Unfortunately, in general the spectrum of A n does not mimic the spectrum of A as...

Spectral approximation of positive operators by iteration subspace method

Andrzej Pokrzywa (1984)

Aplikace matematiky

The iteration subspace method for approximating a few points of the spectrum of a positive linear bounded operator is studied. The behaviour of eigenvalues and eigenvectors of the operators A n arising by this method and their dependence on the initial subspace are described. An application of the Schmidt orthogonalization process for approximate computation of eigenelements of operators A n is also considered.

Spectral asymptotics for manifolds with cylindrical ends

Tanya Christiansen, Maciej Zworski (1995)

Annales de l'institut Fourier

The spectrum of the Laplacian on manifolds with cylindrical ends consists of continuous spectrum of locally finite multiplicity and embedded eigenvalues. We prove a Weyl-type asymptotic formula for the sum of the number of embedded eigenvalues and the scattering phase. In particular, we obtain the optimal upper bound on the number of embedded eigenvalues less than or equal to r 2 , 𝒪 ( r n ) , where n is the dimension of the manifold.

Spectral decompositions, ergodic averages, and the Hilbert transform

Earl Berkson, T. A. Gillespie (2001)

Studia Mathematica

Let U be a trigonometrically well-bounded operator on a Banach space , and denote by ( U ) n = 1 the sequence of (C,2) weighted discrete ergodic averages of U, that is, ( U ) = 1 / n 0 < | k | n ( 1 - | k | / ( n + 1 ) ) U k . We show that this sequence ( U ) n = 1 of weighted ergodic averages converges in the strong operator topology to an idempotent operator whose range is x ∈ : Ux = x, and whose null space is the closure of (I - U). This result expands the scope of the traditional Ergodic Theorem, and thereby serves as a link between Banach space spectral theory and...

Spectral estimates of vibration frequencies of anisotropic beams

Luca Sabatini (2023)

Applications of Mathematics

The use of one theorem of spectral analysis proved by Bordoni on a model of linear anisotropic beam proposed by the author allows the determination of the variation range of vibration frequencies of a beam in two typical restraint conditions. The proposed method is very general and allows its use on a very wide set of problems of engineering practice and mathematical physics.

Spectral factorization of measurable rectangular matrix functions and the vector-valued Riemann problem.

Marek Rakowski, Ilya Spitkovsky (1996)

Revista Matemática Iberoamericana

We define spectral factorization in Lp (or a generalized Wiener-Hopf factorization) of a measurable singular matrix function on a simple closed rectifiable contour Γ. Such factorization has the same uniqueness properties as in the nonsingular case. We discuss basic properties of the vector valued Riemann problem whose coefficient takes singular values almost everywhere on Γ. In particular, we introduce defect numbers for this problem which agree with the usual defect numbers in the case of a nonsingular...

Currently displaying 161 – 180 of 335