Left-definite variations of the classical Fourier expansion theorem.
On définit et étudie les espaces de Banach de type et de cotype , . Cela permet de dire que, dès que certaines applications sont -sommantes, elles sont aussi -sommantes pour .
In many fields: signal theory, economics, etc... where random functions are introduced, frequently and naturally we encounter integral operators whose kernels are covariances. Of course the most immediate properties of that particular kind of integral operators have already been published, this allows us to quote them without proofs. But these properties are scattered over, so we have thought useful to present here a synthetic ordered, almost full account of them without pretending to originality,...
Nous prouvons l’hyper-réflexivité du shift bilatéral sur , lorsque le poids vérifie for et .
We show that if , then the logarithmically weighted Bergman space is mapped by the Libera operator into the space , while if and , then the Hilbert matrix operator maps into .We show that the Libera operator maps the logarithmically weighted Bloch space , , into itself, while maps into .In Pavlović’s paper (2016) it is shown that maps the logarithmically weighted Hardy-Bloch space , , into . We show that this result is sharp. We also show that maps , , into and...
It is proved that if is a Jordan operator on a Hilbert space with the Jordan decomposition , where is normal and is compact and quasinilpotent, i = 1,2, and the Lie algebra generated by J₁,J₂ is an Engel Lie algebra, then the Banach algebra generated by J₁,J₂ is an Engel algebra. Some results for normal operators and Jordan operators on Banach spaces are given.
A general notion of lifting properties for families of sesquilinear forms is formulated. These lifting properties, which appear as particular cases in many classical interpolation problems, are studied for the Toeplitz kernels in Z, and applied for refining and extending the Nehari theorem and the Paley lacunary inequality.
This article is divided into two parts. The first one is on the linear structure of the set of norm-attaining functionals on a Banach space. We prove that every Banach space that admits an infinite-dimensional separable quotient can be equivalently renormed so that the set of norm-attaining functionals contains an infinite-dimensional vector subspace. This partially solves a question proposed by Aron and Gurariy. The second part is on the linear structure of dominated operators. We show that the...
Let H be an infinite-dimensional complex Hilbert space. We give a characterization of surjective linear mappings on B(H) that preserve similarity in both directions.
Let x₀ be a nonzero vector in ℂⁿ. We show that a linear map Φ: Mₙ(ℂ) → Mₙ(ℂ) preserves the local spectral radius at x₀ if and only if there is α ∈ ℂ of modulus one and an invertible matrix A ∈ Mₙ(ℂ) such that Ax₀ = x₀ and for all T ∈ Mₙ(ℂ).
Let H and K be complex complete indefinite inner product spaces, and ℬ(H,K) (ℬ(H) if K = H) the set of all bounded linear operators from H into K. For every T ∈ ℬ(H,K), denote by the indefinite conjugate of T. Suppose that Φ: ℬ(H) → ℬ(K) is a bijective linear map. We prove that Φ satisfies for all A, B ∈ ℬ(H) with if and only if there exist a nonzero real number c and a generalized indefinite unitary operator U ∈ ℬ(H,K) such that for all A ∈ ℬ(H).
Let X and Y be Banach spaces and ℬ(X) and ℬ(Y) the algebras of all bounded linear operators on X and Y, respectively. We say that A,B ∈ ℬ(X) quasi-commute if there exists a nonzero scalar ω such that AB = ωBA. We characterize bijective linear maps ϕ : ℬ(X) → ℬ(Y) preserving quasi-commutativity. In fact, such a characterization can be proved for much more general algebras. In the finite-dimensional case the same result can be obtained without the bijectivity assumption.
Let H be an infinite-dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on H. For an operator T in B(H), let σg(T) denote the generalized spectrum of T. In this paper, we prove that if φ: B(H) → B(H) is a surjective linear map, then φ preserves the generalized spectrum (i.e. σg(φ(T)) = σg(T) for every T ∈ B(H)) if and only if there is A ∈ B(H) invertible such that either φ(T) = ATA-1 for every T ∈ B(H), or φ(T) = ATtrA-1 for every T ∈ B(H). Also, we...