Displaying 21 – 40 of 80

Showing per page

Les opérateurs integraux dont le noyau est une covariance.

Robert M. Fortet (1985)

Trabajos de Estadística e Investigación Operativa

In many fields: signal theory, economics, etc... where random functions are introduced, frequently and naturally we encounter integral operators whose kernels are covariances. Of course the most immediate properties of that particular kind of integral operators have already been published, this allows us to quote them without proofs. But these properties are scattered over, so we have thought useful to present here a synthetic ordered, almost full account of them without pretending to originality,...

Les shifts à poids dissymétriques sont hyper-réflexifs

Xavier Dussau (2002)

Bulletin de la Société Mathématique de France

Nous prouvons l’hyper-réflexivité du shift bilatéral S ω sur ω 2 ( ) , lorsque le poids vérifie ω ( n ) = 1 for n 0 et lim n - ω ( n ) = + .

Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces

Boban Karapetrović (2018)

Czechoslovak Mathematical Journal

We show that if α > 1 , then the logarithmically weighted Bergman space A log α 2 is mapped by the Libera operator into the space A log α - 1 2 , while if α > 2 and 0 < ε α - 2 , then the Hilbert matrix operator H maps A log α 2 into A log α - 2 - ε 2 .We show that the Libera operator maps the logarithmically weighted Bloch space log α , α , into itself, while H maps log α into log α + 1 .In Pavlović’s paper (2016) it is shown that maps the logarithmically weighted Hardy-Bloch space log α 1 , α > 0 , into log α - 1 1 . We show that this result is sharp. We also show that H maps log α 1 , α 0 , into log α - 1 1 and...

Lie algebras generated by Jordan operators

Peng Cao, Shanli Sun (2008)

Studia Mathematica

It is proved that if J i is a Jordan operator on a Hilbert space with the Jordan decomposition J i = N i + Q i , where N i is normal and Q i is compact and quasinilpotent, i = 1,2, and the Lie algebra generated by J₁,J₂ is an Engel Lie algebra, then the Banach algebra generated by J₁,J₂ is an Engel algebra. Some results for normal operators and Jordan operators on Banach spaces are given.

Lifting properties, Nehari theorem and Paley lacunary inequality.

Mischa Cotlar, Cora Sadosky (1986)

Revista Matemática Iberoamericana

A general notion of lifting properties for families of sesquilinear forms is formulated. These lifting properties, which appear as particular cases in many classical interpolation problems, are studied for the Toeplitz kernels in Z, and applied for refining and extending the Nehari theorem and the Paley lacunary inequality.

Lineability of functionals and operators

Francisco Javier García-Pacheco, Daniele Puglisi (2010)

Studia Mathematica

This article is divided into two parts. The first one is on the linear structure of the set of norm-attaining functionals on a Banach space. We prove that every Banach space that admits an infinite-dimensional separable quotient can be equivalently renormed so that the set of norm-attaining functionals contains an infinite-dimensional vector subspace. This partially solves a question proposed by Aron and Gurariy. The second part is on the linear structure of dominated operators. We show that the...

Linear mappings preserving similarity on B(H)

Tatjana Petek (2004)

Studia Mathematica

Let H be an infinite-dimensional complex Hilbert space. We give a characterization of surjective linear mappings on B(H) that preserve similarity in both directions.

Linear maps on Mₙ(ℂ) preserving the local spectral radius

Abdellatif Bourhim, Vivien G. Miller (2008)

Studia Mathematica

Let x₀ be a nonzero vector in ℂⁿ. We show that a linear map Φ: Mₙ(ℂ) → Mₙ(ℂ) preserves the local spectral radius at x₀ if and only if there is α ∈ ℂ of modulus one and an invertible matrix A ∈ Mₙ(ℂ) such that Ax₀ = x₀ and Φ ( T ) = α A T A - 1 for all T ∈ Mₙ(ℂ).

Linear maps preserving elements annihilated by the polynomial X Y - Y X

Jianlian Cui, Jinchuan Hou (2006)

Studia Mathematica

Let H and K be complex complete indefinite inner product spaces, and ℬ(H,K) (ℬ(H) if K = H) the set of all bounded linear operators from H into K. For every T ∈ ℬ(H,K), denote by T the indefinite conjugate of T. Suppose that Φ: ℬ(H) → ℬ(K) is a bijective linear map. We prove that Φ satisfies Φ ( A ) Φ ( B ) = Φ ( B ) Φ ( A ) for all A, B ∈ ℬ(H) with A B = B A if and only if there exist a nonzero real number c and a generalized indefinite unitary operator U ∈ ℬ(H,K) such that Φ ( A ) = c U A U for all A ∈ ℬ(H).

Linear maps preserving quasi-commutativity

Heydar Radjavi, Peter Šemrl (2008)

Studia Mathematica

Let X and Y be Banach spaces and ℬ(X) and ℬ(Y) the algebras of all bounded linear operators on X and Y, respectively. We say that A,B ∈ ℬ(X) quasi-commute if there exists a nonzero scalar ω such that AB = ωBA. We characterize bijective linear maps ϕ : ℬ(X) → ℬ(Y) preserving quasi-commutativity. In fact, such a characterization can be proved for much more general algebras. In the finite-dimensional case the same result can be obtained without the bijectivity assumption.

Linear maps preserving the generalized spectrum.

Mostafa Mbekhta (2007)

Extracta Mathematicae

Let H be an infinite-dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on H. For an operator T in B(H), let σg(T) denote the generalized spectrum of T. In this paper, we prove that if φ: B(H) → B(H) is a surjective linear map, then φ preserves the generalized spectrum (i.e. σg(φ(T)) = σg(T) for every T ∈ B(H)) if and only if there is A ∈ B(H) invertible such that either φ(T) = ATA-1 for every T ∈ B(H), or φ(T) = ATtrA-1 for every T ∈ B(H). Also, we...

Currently displaying 21 – 40 of 80