Displaying 41 – 60 of 212

Showing per page

The cubic Szegő equation

Patrick Gérard, Sandrine Grellier (2010)

Annales scientifiques de l'École Normale Supérieure

We consider the following Hamiltonian equation on the L 2 Hardy space on the circle, i t u = Π ( | u | 2 u ) , where Π is the Szegő projector. This equation can be seen as a toy model for totally non dispersive evolution equations. We display a Lax pair structure for this equation. We prove that it admits an infinite sequence of conservation laws in involution, and that it can be approximated by a sequence of finite dimensional completely integrable Hamiltonian systems. We establish several instability phenomena illustrating...

The decomposability of operators relative to two subspaces

A. Katavolos, M. Lambrou, W. Longstaff (1993)

Studia Mathematica

Let M and N be nonzero subspaces of a Hilbert space H satisfying M ∩ N = {0} and M ∨ N = H and let T ∈ ℬ(H). Consider the question: If T leaves each of M and N invariant, respectively, intertwines M and N, does T decompose as a sum of two operators with the same property and each of which, in addition, annihilates one of the subspaces? If the angle between M and N is positive the answer is affirmative. If the angle is zero, the answer is still affirmative for finite rank operators but there are...

The density of states of a local almost periodic operator in ν

Andrzej Krupa (2003)

Studia Mathematica

We prove the existence of the density of states of a local, self-adjoint operator determined by a coercive, almost periodic quadratic form on H m ( ν ) . The support of the density coincides with the spectrum of the operator in L ² ( ν ) .

The diagonal mapping in mixed norm spaces

Guangbin Ren, Jihuai Shi (2004)

Studia Mathematica

For any holomorphic function F in the unit polydisc Uⁿ of ℂⁿ, we consider its restriction to the diagonal, i.e., the function in the unit disc U of ℂ defined by F(z) = F(z,...,z), and prove that the diagonal mapping maps the mixed norm space H p , q , α ( U ) of the polydisc onto the mixed norm space H p , q , | α | + ( p / q + 1 ) ( n - 1 ) ( U ) of the unit disc for any 0 < p < ∞ and 0 < q ≤ ∞.

The essential spectrum of holomorphic Toeplitz operators on H p spaces

Mats Andersson, Sebastian Sandberg (2003)

Studia Mathematica

We compute the essential Taylor spectrum of a tuple of analytic Toeplitz operators T g on H p ( D ) , where D is a strictly pseudoconvex domain. We also provide specific formulas for the index of T g provided that g - 1 ( 0 ) is a compact subset of D.

The generalized Toeplitz operators on the Fock space F α 2

Chunxu Xu, Tao Yu (2024)

Czechoslovak Mathematical Journal

Let μ be a positive Borel measure on the complex plane n and let j = ( j 1 , , j n ) with j i . We study the generalized Toeplitz operators T μ ( j ) on the Fock space F α 2 . We prove that T μ ( j ) is bounded (or compact) on F α 2 if and only if μ is a Fock-Carleson measure (or vanishing Fock-Carleson measure). Furthermore, we give a necessary and sufficient condition for T μ ( j ) to be in the Schatten p -class for 1 p < .

Currently displaying 41 – 60 of 212