The Bochner-Kolmogorov extension theorem for semispectral measures
The main purpose of this paper is to prove the boundedness of the multidimensional Hardy type operator in weighted Lebesgue spaces with a variable exponent. As an application we prove the boundedness of certain sublinear operators on the weighted variable Lebesgue space.
The aim of this paper is to characterize the boundedness of two classes of integral operators from to in terms of the parameters , , , , and , , where is the Siegel upper half-space. The results in the presented paper generalize a corresponding result given in C. Liu, Y. Liu, P. Hu, L. Zhou (2019).
We provide a survey of properties of the Cesàro operator on Hardy and weighted Bergman spaces, along with its connections to semigroups of weighted composition operators. We also describe recent developments regarding Cesàro-like operators and indicate some open questions and directions of future research.
Let denote the operator-norm closure of the class of convolution operators where is a suitable function space on . Let be the closed subspace of regular functions in the Marinkiewicz space , . We show that the space is isometrically isomorphic to and that strong operator sequential convergence and norm convergence in coincide. We also obtain some results concerning convolution operators under the Wiener transformation. These are to improve a Tauberian theorem of Wiener on .
The boundedness properties of commutators for operators are of central importance in Mathematical Analysis, and some of these commutators arise in a natural way from interpolation theory. Our aim is to present a general abstract method to prove the boundedness of the commutator for linear operators and certain unbounded operators that appear in interpolation theory, previously known and a priori unrelated for both real and complex interpolation methods, and also to show how the abstract result...
The Embry conditions are a set of positivity conditions that characterize subnormal operators (on Hilbert spaces) whose theory is closely related to the theory of positive definite functions on the additive semigroup ℕ of non-negative integers. Completely hyperexpansive operators are the negative definite counterpart of subnormal operators. We show that completely hyperexpansive operators are characterized by a set of negativity conditions, which are the natural analog of the Embry conditions for...
We prove that the separating space of a Lie homomorphism from a Banach algebra onto a Banach algebra is contained in the centre modulo the radical.